Citation: | CHAO Zhicong, GAN Minglong, LUO Ye, XIE Qiliang, FU Junxiang, WEN Herui. Energy migration mechanism of polycrystalline-shell NaYF4 nanoparticles[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 29-34. DOI: 10.13264/j.cnki.ysjskx.2018.04.005 |
[1] |
LIU Z E, WANG J, LI Y, et al. Near-Infrared light manipulated chemoselective reductions enabled by an upconversional supersandwich nanostructure[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19416-19423. http://www.ncbi.nlm.nih.gov/pubmed/26270621
|
[2] |
ZHENG D W, LI B, LI C X, et al. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting[J]. ACS Nano, 2016, 10(9): 8715-8722. doi: 10.1021/acsnano.6b04156
|
[3] |
ZHAO L Z, PENG J J, HUANG Q, et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells[J]. ACS Nano, 2012, 6(5): 4054-4062. doi: 10.1021/nn300436b
|
[4] |
LEVY E, TAJON C, BISCHOF T, et al. Energy-looping nanoparticles: harnessing excited-State absorption for deep-tissue imaging[J]. ACS Nano, 2016, 10(9): 8423-8433. doi: 10.1021/acsnano.6b03288
|
[5] |
WU N, BAO L, DING L, et al. A Single excitation-duplexed imaging strategy for profiling cell surface protein-specific glycoforms[J]. Angewandte Chemie International Eddition, 2016, 55(17): 5220-5224. doi: 10.1002/anie.201601233
|
[6] |
LIU X M, QUE L A B, KONG X G, et al. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform[J]. Nanoscale, 2015, 7(36): 14914-14923. doi: 10.1039/C5NR03690A
|
[7] |
YANG Y M, LIU F, LIU X G, et al. NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles[J]. Nanoscale, 2013, 5(1): 231-238. doi: 10.1039/C2NR32835F
|
[8] |
SHEN J, CHEN G Y, VU A M, et al. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm[J]. Advanced Optical Materials, 2013, 1(9): 644-650. doi: 10.1002/adom.v1.9
|
[9] |
XIE X J, GAO N Y, DENG R R, et al. Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles[J]. Journal of the American Chemical Society, 2013, 135(35): 12608-12611. http://www.ncbi.nlm.nih.gov/pubmed/23947580
|
[10] |
WANG D, XUE B, KONG X G, et al. 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging[J]. Nanoscale, 2015, 7(1): 190-197. doi: 10.1039/C4NR04953E
|
[11] |
文小强, 王玉香, 赖华生, 等. Mg2+, Ca2+, Ba2+离子部分取代对SrAl2O4: Eu2+, Dy3+晶体结构和发光性能的影响[J].有色金属科学与工程, 2011, 2(1): 39-42. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20110109
|
[12] |
孙珅磊, 游维雄, 肖宗梁, 等.溶胶-凝胶法制备Y2Zr2O7: Tm3+及其发光性能研究[J].有色金属科学与工程, 2015, 6(1): 11-115. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201501021
|
[13] |
潘小青, 赖长炳.稀土发光材料的水热法合成及其发光强度[J].有色金属科学与工程, 2011, 2(5): 29-31. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201105006
|
[14] |
WANG F, CHATTERJEE D K, LI Z Q, et al. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence[J]. Nanotechnology, 2006, 17, 5786-5791. doi: 10.1088/0957-4484/17/23/013
|
[15] |
张大超, 曾宪营, 张菊花.用于氨氮处理的沸石的合成条件研究[J].江西理工大学学报, 2012, 33(1): 7-12. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb201201005
|
[16] |
王春英, 江桐桐, 周丹.等掺铁钨酸铋的制备及光催化罗丹明B的研究[J].江西理工大学学报, 2013, 34(1): 7-12. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFYX201301001&dbname=CJFD&dbcode=CJFQ
|
[17] |
余长林, 温和瑞, 相彬, 等.不同晶体结构BiVO4的制备及其可见光催化性能[J].江西理工大学学报, 2009, 30(4): 9-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nfyjxyxb200904003
|
[18] |
LU F, YANG F, DING Y J, et al. Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapyadvanced[J]. Functional Materials, 2016.26(26): 4778-4785. doi: 10.1002/adfm.v26.26
|
[19] |
WANG F, LIU X G.Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J]. Journal of the American Chemical Society, 2008(17), 130: 5642-5643. doi: 10.1021/ja800868a
|
[20] |
LI Z Q, ZHANG Y. Monodisperse silica-coated polyvinylpyrrolidone NaYF4 nanocrystals with multicolor upconversion fluorescence emission[J]. Angewandte Chemie Internation, 2006, 45(46): 7732-7735. doi: 10.1002/(ISSN)1521-3773
|
[21] |
孟硕, 赵梦洁, 韦钦磊, 等.Er3+-Yb3+掺杂SiO2-SrO-NaF玻璃陶瓷的制备及表征[J].无机化学学报, 2017, 39(9): 1505-1509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjhxxb201709001
|
[22] |
谢婉莹, 安西涛, 酒俊霞, 等. Gd3+掺杂浓度对NaErF4:Yb纳米晶上转换荧光性能的影响[J].发光学报, 2017, 38(3): 281-287. http://d.old.wanfangdata.com.cn/Periodical/wjclxb200702002
|
[23] |
王祺, 廖金生, 黄海平, 等.水热合成LuF3: Yb3+, Er3+微晶及其上转换发射与温度传感特性[J].无机化学学报, 2018, 34(3): 579-588. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201803022
|
[24] |
JING Z, SUN D P, TU L P, et al. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures[J]. Angewandte Chemie International Eddition[J]. 2018, 57(12): 3108-3112. doi: 10.1002/anie.201712524
|
[1] | JIN Xinyan, REN Yuling, LIN Chuanhua, WANG Kai. Influence of Fe on Cr content in Al-Zn-Mg-Si molten bath[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 633-640. DOI: 10.13264/j.cnki.ysjskx.2023.05.005 |
[2] | MA Shuaibing, LIU Fupeng, CHEN Feixiong. Separation of Ga and Ge from leachate in zinc hydrometallurgy by modified peanut shells adsorption[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 18-26. DOI: 10.13264/j.cnki.ysjskx.2022.01.003 |
[3] | CAO Caifang, PANG Zhensheng, YUAN Zhuangzhuang, WANG Ruixiang, NIE Huaping, LI Laichao. Study on the decomposition of spent SCR catalyst by Na2CO3-NaCl mixed roasting method[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 63-69. DOI: 10.13264/j.cnki.ysjskx.2021.03.008 |
[4] | GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010 |
[5] | ZHOU Zhiwei, GONG Hongying, JIA Xingpeng, JI Youdi, SHI Weizhong, LIAO Zehuan, XU Yuanzhong. Multi-objective optimization of cold extrusion forming of aluminum alloy accumulator shell[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 67-74. DOI: 10.13264/j.cnki.ysjskx.2021.01.009 |
[6] | XIONG Houdong, CHEN Yang, WANG Lei, TAN Qiulan, ZHANG Lili, ZHONG Zhenchen. Microwave absorbing performance of FeSiCr/GO nanocomposites[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 44-51. DOI: 10.13264/j.cnki.ysjskx.2020.03.006 |
[7] | TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005 |
[8] | ZHANG Yangrong, CHEN Hao, XIONG Wei. Tribological performance of AlCrN coating sliding against Si-based ceramic balls in ambient air and seawater conditions[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 99-104. DOI: 10.13264/j.cnki.ysjskx.2017.01.017 |
[9] | DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008 |
[10] | ZHANG Xiaozeng, CHAO Zhicong, FU Xionghui, XIE Meizhen, YUAN Jinpeng, LUO Zhenjiu, XIAO Kewen, HAN Dan, FU Junxiang, WEN Herui. Controllable synthesis of water-soluble NaYF4: Yb, Er upconversion nano-particles and their luminescent properties[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 59-65. DOI: 10.13264/j.cnki.ysjskx.2016.03.011 |