Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
CHAO Zhicong, GAN Minglong, LUO Ye, XIE Qiliang, FU Junxiang, WEN Herui. Energy migration mechanism of polycrystalline-shell NaYF4 nanoparticles[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 29-34. DOI: 10.13264/j.cnki.ysjskx.2018.04.005
Citation: CHAO Zhicong, GAN Minglong, LUO Ye, XIE Qiliang, FU Junxiang, WEN Herui. Energy migration mechanism of polycrystalline-shell NaYF4 nanoparticles[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 29-34. DOI: 10.13264/j.cnki.ysjskx.2018.04.005

Energy migration mechanism of polycrystalline-shell NaYF4 nanoparticles

More Information
  • Received Date: May 28, 2018
  • Published Date: August 30, 2018
  • With ethylene glycol (EG) as solvent and polyethyleneimine (PEI) as surfactant, upconversion nanoparticles (UCNPs) with polycrystalline shell structure were synthesized via solvothermal method. The polycrystalline shell is confirmed and calculated by HAADF, HRTEM and size distribution from TEM. Shell thickness is readily tuned by control the amount of reactant. When the polycrystalline shell thickness is 1.7 nm, the upconversion luminescence intensity reaches the maximum, which is different from the situation of single crystal shell. The possible reason is that a large number of grain boundaries in the polycrystalline shell lead to a serious loss of energy transfer in the Yb-Yb long distance energy migration.
  • [1]
    LIU Z E, WANG J, LI Y, et al. Near-Infrared light manipulated chemoselective reductions enabled by an upconversional supersandwich nanostructure[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19416-19423. http://www.ncbi.nlm.nih.gov/pubmed/26270621
    [2]
    ZHENG D W, LI B, LI C X, et al. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting[J]. ACS Nano, 2016, 10(9): 8715-8722. doi: 10.1021/acsnano.6b04156
    [3]
    ZHAO L Z, PENG J J, HUANG Q, et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells[J]. ACS Nano, 2012, 6(5): 4054-4062. doi: 10.1021/nn300436b
    [4]
    LEVY E, TAJON C, BISCHOF T, et al. Energy-looping nanoparticles: harnessing excited-State absorption for deep-tissue imaging[J]. ACS Nano, 2016, 10(9): 8423-8433. doi: 10.1021/acsnano.6b03288
    [5]
    WU N, BAO L, DING L, et al. A Single excitation-duplexed imaging strategy for profiling cell surface protein-specific glycoforms[J]. Angewandte Chemie International Eddition, 2016, 55(17): 5220-5224. doi: 10.1002/anie.201601233
    [6]
    LIU X M, QUE L A B, KONG X G, et al. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform[J]. Nanoscale, 2015, 7(36): 14914-14923. doi: 10.1039/C5NR03690A
    [7]
    YANG Y M, LIU F, LIU X G, et al. NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles[J]. Nanoscale, 2013, 5(1): 231-238. doi: 10.1039/C2NR32835F
    [8]
    SHEN J, CHEN G Y, VU A M, et al. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm[J]. Advanced Optical Materials, 2013, 1(9): 644-650. doi: 10.1002/adom.v1.9
    [9]
    XIE X J, GAO N Y, DENG R R, et al. Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles[J]. Journal of the American Chemical Society, 2013, 135(35): 12608-12611. http://www.ncbi.nlm.nih.gov/pubmed/23947580
    [10]
    WANG D, XUE B, KONG X G, et al. 808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging[J]. Nanoscale, 2015, 7(1): 190-197. doi: 10.1039/C4NR04953E
    [11]
    文小强, 王玉香, 赖华生, 等. Mg2+, Ca2+, Ba2+离子部分取代对SrAl2O4: Eu2+, Dy3+晶体结构和发光性能的影响[J].有色金属科学与工程, 2011, 2(1): 39-42. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20110109
    [12]
    孙珅磊, 游维雄, 肖宗梁, 等.溶胶-凝胶法制备Y2Zr2O7: Tm3+及其发光性能研究[J].有色金属科学与工程, 2015, 6(1): 11-115. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201501021
    [13]
    潘小青, 赖长炳.稀土发光材料的水热法合成及其发光强度[J].有色金属科学与工程, 2011, 2(5): 29-31. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201105006
    [14]
    WANG F, CHATTERJEE D K, LI Z Q, et al. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence[J]. Nanotechnology, 2006, 17, 5786-5791. doi: 10.1088/0957-4484/17/23/013
    [15]
    张大超, 曾宪营, 张菊花.用于氨氮处理的沸石的合成条件研究[J].江西理工大学学报, 2012, 33(1): 7-12. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb201201005
    [16]
    王春英, 江桐桐, 周丹.等掺铁钨酸铋的制备及光催化罗丹明B的研究[J].江西理工大学学报, 2013, 34(1): 7-12. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=NFYX201301001&dbname=CJFD&dbcode=CJFQ
    [17]
    余长林, 温和瑞, 相彬, 等.不同晶体结构BiVO4的制备及其可见光催化性能[J].江西理工大学学报, 2009, 30(4): 9-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nfyjxyxb200904003
    [18]
    LU F, YANG F, DING Y J, et al. Highly emissive Nd3+-sensitized multilayered upconversion nanoparticles for efficient 795 nm operated photodynamic therapyadvanced[J]. Functional Materials, 2016.26(26): 4778-4785. doi: 10.1002/adfm.v26.26
    [19]
    WANG F, LIU X G.Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J]. Journal of the American Chemical Society, 2008(17), 130: 5642-5643. doi: 10.1021/ja800868a
    [20]
    LI Z Q, ZHANG Y. Monodisperse silica-coated polyvinylpyrrolidone NaYF4 nanocrystals with multicolor upconversion fluorescence emission[J]. Angewandte Chemie Internation, 2006, 45(46): 7732-7735. doi: 10.1002/(ISSN)1521-3773
    [21]
    孟硕, 赵梦洁, 韦钦磊, 等.Er3+-Yb3+掺杂SiO2-SrO-NaF玻璃陶瓷的制备及表征[J].无机化学学报, 2017, 39(9): 1505-1509. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wjhxxb201709001
    [22]
    谢婉莹, 安西涛, 酒俊霞, 等. Gd3+掺杂浓度对NaErF4:Yb纳米晶上转换荧光性能的影响[J].发光学报, 2017, 38(3): 281-287. http://d.old.wanfangdata.com.cn/Periodical/wjclxb200702002
    [23]
    王祺, 廖金生, 黄海平, 等.水热合成LuF3: Yb3+, Er3+微晶及其上转换发射与温度传感特性[J].无机化学学报, 2018, 34(3): 579-588. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201803022
    [24]
    JING Z, SUN D P, TU L P, et al. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures[J]. Angewandte Chemie International Eddition[J]. 2018, 57(12): 3108-3112. doi: 10.1002/anie.201712524
  • Related Articles

    [1]JIN Xinyan, REN Yuling, LIN Chuanhua, WANG Kai. Influence of Fe on Cr content in Al-Zn-Mg-Si molten bath[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 633-640. DOI: 10.13264/j.cnki.ysjskx.2023.05.005
    [2]MA Shuaibing, LIU Fupeng, CHEN Feixiong. Separation of Ga and Ge from leachate in zinc hydrometallurgy by modified peanut shells adsorption[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 18-26. DOI: 10.13264/j.cnki.ysjskx.2022.01.003
    [3]CAO Caifang, PANG Zhensheng, YUAN Zhuangzhuang, WANG Ruixiang, NIE Huaping, LI Laichao. Study on the decomposition of spent SCR catalyst by Na2CO3-NaCl mixed roasting method[J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 63-69. DOI: 10.13264/j.cnki.ysjskx.2021.03.008
    [4]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [5]ZHOU Zhiwei, GONG Hongying, JIA Xingpeng, JI Youdi, SHI Weizhong, LIAO Zehuan, XU Yuanzhong. Multi-objective optimization of cold extrusion forming of aluminum alloy accumulator shell[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 67-74. DOI: 10.13264/j.cnki.ysjskx.2021.01.009
    [6]XIONG Houdong, CHEN Yang, WANG Lei, TAN Qiulan, ZHANG Lili, ZHONG Zhenchen. Microwave absorbing performance of FeSiCr/GO nanocomposites[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 44-51. DOI: 10.13264/j.cnki.ysjskx.2020.03.006
    [7]TIAN Jian, LIU Zhen, WEI Longfu, YU Changlin. A visible-light-driven core-shell like Ag2S@Ag2CO3 heterojunction photocatalyst with high performance in pollutants degradation[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 23-35. DOI: 10.13264/j.cnki.ysjskx.2017.06.005
    [8]ZHANG Yangrong, CHEN Hao, XIONG Wei. Tribological performance of AlCrN coating sliding against Si-based ceramic balls in ambient air and seawater conditions[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 99-104. DOI: 10.13264/j.cnki.ysjskx.2017.01.017
    [9]DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008
    [10]ZHANG Xiaozeng, CHAO Zhicong, FU Xionghui, XIE Meizhen, YUAN Jinpeng, LUO Zhenjiu, XIAO Kewen, HAN Dan, FU Junxiang, WEN Herui. Controllable synthesis of water-soluble NaYF4: Yb, Er upconversion nano-particles and their luminescent properties[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 59-65. DOI: 10.13264/j.cnki.ysjskx.2016.03.011

Catalog

    Article Metrics

    Article views (59) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return