Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LUO Zhijiang, LI Dan, SHEN Cunhua, YU Xiajing, YOU Yajie, ZHONG Changming. Experimental study on precipitating supernatant of rare earth mother liquor by nanofiltration[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 109-114. DOI: 10.13264/j.cnki.ysjskx.2018.02.018
Citation: LUO Zhijiang, LI Dan, SHEN Cunhua, YU Xiajing, YOU Yajie, ZHONG Changming. Experimental study on precipitating supernatant of rare earth mother liquor by nanofiltration[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 109-114. DOI: 10.13264/j.cnki.ysjskx.2018.02.018

Experimental study on precipitating supernatant of rare earth mother liquor by nanofiltration

More Information
  • Received Date: December 06, 2017
  • Published Date: April 29, 2018
  • The supernatant of rare earth mother solution obtained from the leaching of a rare earth company in Ganzhou is treated by the supernatant after NH4HCO3 removal of impurity. The concentration efficiency of rare earth ions in the raw liquid by nanofiltration and the separation and recovery of NH3-N are mainly studied, so as to provide reference for industrial application. The experimental results showed that when the concentration of rare earth ions in the raw liquor was 142.9 mg/L and the concentration of ammonia nitrogen was 346.1 mg/L, the retention rate of rare earth ions in the concentrated liquid side reached 95 % when the operation pressure was 0.8 MPa, the influent pH was 6.49, and the running temperature was 25 degrees. The intercepting rate of impurity ions, such as Ca2+, Mg2+, Mn2+ and Zn2+, can reach 75 %~90 %. The ammonia nitrogen through the liquid side is about 60 % of the original concentration. When the supernatant of the rare earth mother solution of 6.0 L is concentrated to 0.6 L, the concentration of RE3+ is increased to 1 242.0 mg/L, and the concentration is nearly 8.69 times.
  • [1]
    池汝安, 田君, 罗仙平, 等.风化壳淋积型稀土矿的基础研究[J].有色金属科学与工程, 2012, 3(4):1-13. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201204001
    [2]
    徐水太, 项宇, 刘中亚.离子型稀土原地浸矿地下水氨氮污染模拟与预测[J].有色金属科学与工程, 2016, 7(2):140-146. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602025
    [3]
    DAS N, DAS D. Recovery of rare earth metals through biosorption:An overview[J].Journalof rareearths, 2013, 31(10):933-943. https://www.sciencedirect.com/science/article/pii/S1002072113600095
    [4]
    胡谷华.浸出母液后处理工艺影响稀土回收率和产品质量因素研究[J].世界有色金属, 2016, 14: 39-43. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_gtft200803008
    [5]
    伍洪强, 尹艳芬, 方夕辉.风化壳淋积型稀土矿开采及分离技术的现状与发展[J].有色金属科学与工程, 2010, 1(2): 73-76. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20100216
    [6]
    胡亚芹, 吴春金, 叶向群, 等.膜集成技术浓缩稀土废水中的氯化铵[J].水处理技术, 2005, 31(8): 38-39. http://www.cqvip.com/QK/90921X/200508/18046520.html
    [7]
    瞿芳术, 王小波, 任南琪, 等.生物活性炭滤池/超滤组合工艺处理华南山区水库水[J].中国给水排水, 2017, 33(9): 16-21. http://www.doc88.com/p-2512556500490.html
    [8]
    YU S C, CHEN Z W, CHENG Q B, etal. Application of thin-film composite hollow fiber membrane to submerged nan-filtration of anionic dye aqueous solutions[J]. Separation and Purification Technology, 2012(88): 121-129. https://www.sciencedirect.com/science/article/pii/S1383586611007349
    [9]
    黄万抚, 严思明, 丁声强.膜分离技术在印染废水中的应用及发展趋势[J].有色金属科学与工程, 2012, 3(2):41-45. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201202010
    [10]
    GöNDE B E, ARAYICI S, BARLAS H. Advanced treatment of pulp and paper mill wastewater by nanofiltration process: effects of operating conditions on membrane fouling[J]. Sep. Purif. Technol, 2011(76):292-302. https://www.researchgate.net/publication/251672195_Advanced_treatment_of_pulp_and_paper_mill_wastewater_by_nanofiltration_process_Effects_of_operating_conditions_on_membrane_fouling
    [11]
    易秀, 田浩, 刘意竹, 等.反渗透技术在氨氮废水处理中的应用研究[J].环境工程, 2014, 32(9): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201409001
    [12]
    郭成会. 纳滤膜去除饮用水中砷的实验研究[D]. 苏州: 苏州科技学院, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10332-1011225001.htm
    [13]
    周栋, 傅寅翼, 朱丽静, 等.纳滤预处理反渗透海水淡化研究进展[J].膜科学与技术, 2015, 35(3): 106-112. http://www.cnki.com.cn/Article/CJFDTotal-MKXY201503021.htm
    [14]
    张春尧, 耿洪鑫, 郎庆成, 等.新型气隙式膜蒸馏组件脱盐过程[J].化工学报, 2015, 66(10):4000-4006. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ201510025.htm
    [15]
    王红军, 刘久清, 周钦, 等.低品位铜矿浸出液除铁及纳滤浓缩铜的研究[J].中南大学学报(自然科学版), 2014, 45(12): 4111-4115. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zngd201412002&dbname=CJFD&dbcode=CJFQ
    [16]
    李胤龙, 杨晓松, 刘伟, 等.纳滤法去除模拟矿山废水中金属离子的研究[J].北京化工大学学报(自然科学版), 2011, 38(1):21-25. http://d.wanfangdata.com.cn/Periodical_bjhgdxxb201101005.aspx
    [17]
    张钦库, 朱建领, 刘康怀.膜分离技术处理百草枯生产废水实验研究[J].膜科学与技术, 2014, 34(4): 94-98. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1717683
    [18]
    孙启, 杨丽梅, 黄松涛, 等.钴镍萃取过程中萃合物配位结构的研究进展[J].稀有金属, 2017, 41(7): 816-825. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zxjs201707013&dbname=CJFD&dbcode=CJFQ
    [19]
    杨晓帆. 纳滤膜用于脱盐的实验研究[D]. 天津: 天津大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10056-2009073400.htm
    [20]
    赵宝军. Al2O3-SnO2纳滤陶瓷膜制备及高含盐废水中二价盐分离研究[D]. 天津: 天津工业大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2986471
    [21]
    宋敏娟, 熊守安, 张荣, 等.反渗透脱除选矿循环水中硫酸根的研究[J].水处理技术, 2013, 39(3):81-84. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_scljs201303020
    [22]
    游亚杰. 纳滤浓缩富集稀土母液沉淀上清液的研究[D]. 赣州: 江西理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10407-1016244861.htm
    [23]
    黄丹, 郑甜甜, 刘蕊, 等.纳滤去除水中布洛芬的研究[J].膜科学与技术, 2014, 34(2): 72-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mkxyjs201402014
  • Cited by

    Periodical cited type(4)

    1. 詹中伟,葛玉麟,田礼熙,王帅星,杨由凯,连忠平,杜楠. 搅拌速度和颗粒尺寸对复合电沉积Ni-cBN复合量的影响及机理分析. 电镀与精饰. 2022(01): 1-5 .
    2. 王步祥,舒庆. 单原子电催化析氢催化剂的研究进展. 有色金属科学与工程. 2022(05): 92-100 . 本站查看
    3. 权琳琳,翟绘丰,叶晖. 喷注器钎焊镍镀层均匀性控制. 火箭推进. 2020(05): 94-101 .
    4. 耿楠,刘慧丛,李卫平. 代铬复合电沉积研究现状与影响因素分析. 表面技术. 2019(10): 1-12 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (117) PDF downloads (6) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return