Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
PAN Rongxuan, HUANG Jindi, XU Zhifeng. Stirring process simulation and orthogonal optimization of vertical reactor for copper anode mud leaching[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 12-18. DOI: 10.13264/j.cnki.ysjskx.2017.04.003
Citation: PAN Rongxuan, HUANG Jindi, XU Zhifeng. Stirring process simulation and orthogonal optimization of vertical reactor for copper anode mud leaching[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 12-18. DOI: 10.13264/j.cnki.ysjskx.2017.04.003

Stirring process simulation and orthogonal optimization of vertical reactor for copper anode mud leaching

More Information
  • Received Date: January 21, 2017
  • Published Date: August 30, 2017
  • Based on Computational Fluid Dynamics (CFD), a stirring-process simulation model of solid-liquid two-phase flow in the 25 m3 vertical reactor of copper anode mud leaching is established by using Euler-Euler multiphase model, multi-reference flame(MRF) model and standard k-ε turbulence model and the numerical simulation results of stirring power at different rotational speeds are further compared with those by the empirical formula. Meanwhile, the stirring speed, the blade installation angle, the blade distance and the damping baffle height are selected as the factors to evaluate the solid volume section concentration of vertical reactor. The orthogonal design method is applied to optimize the stirring conditions. The results show that the mathematical model is fit well with the empirical Nagata formula and it can be applied well in stirring simulation. The optimal combination is determined as follows: the stirring speed of 100 r/min, the blade installation angle of 45°, the blade distance of 1.615 m and the baffle height of 2 m. Under these conditions, the solid volume section concentration of the reactor is increased by 13% while compared with the actual production conditions.
  • [1]
    张博亚. 铜阳极泥加压酸浸预处理工艺及机理研究[D]. 昆明理工大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10674-1011057744.htm
    [2]
    徐春燕, 池春榕, 刘祖文, 等.气升式反应器内流动与传质研究进展[J].有色金属科学与工程, 2016, 7(5):110-118. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20160520
    [3]
    周俊超, 车圆圆, 吴可君, 等.基于CFD模拟的强放热反应釜盘管空间排布的优化设计[J].高校化学工程学报, 2015(1):27-34. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201501004.htm
    [4]
    何洲. 搅拌器内部流场特征的数值模拟研究[D]. 华东理工大学, 2011. http://d.wanfangdata.com.cn/Thesis/Y1858191
    [5]
    SANTOS-MOREAU V, BRUNET-ERRARD L, ROLLAND M. Numerical CFD simulation of a batch stirred tank reactor with stationary catalytic basket[J]. Chemical Engineering Journal, 2012, 207/208(10):596-606. http://www.doc88.com/p-9794740878442.html
    [6]
    QI N, ZHANG H, ZHANG K, et al. CFD simulation of particle suspension in a stirred tank[J]. Particuology, 2013, 11(3):317-326. doi: 10.1016/j.partic.2012.03.003
    [7]
    MILEWSKA A, MOLGA E J. CFD simulation of accidents in industrial batch stirred tank reactors[J]. Chemical Engineering Science, 2007, 62(18/19/20):4920-4925. http://www.sciencedirect.com/science/article/pii/S000925090600827X
    [8]
    MONTANTE G, MAGELLI F. Modelling of solids distribution in stirred tanks: analysis of simulation strategies and comparison with experimental data[J]. International Journal of Computational Fluid Dynamics, 2005, 19(3):253-262. doi: 10.1080/10618560500081795
    [9]
    陈卓, 周萍, 李鹏, 等.机械搅拌式锌浸出槽内固液两相流的数值模拟与结构优化[J].中国有色金属学报, 2012, 22(6):1835-1841. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201206040.htm
    [10]
    王晓瑾, 彭炯, 杨伶, 等.行星式搅拌釜混合性能的数值模拟[J].北京理工大学学报, 2012, 32(6):645-649. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201206021.htm
    [11]
    DEGLON D A, MEYER C J. CFD modelling of stirred tanks: Numerical considerations[J]. Minerals Engineering, 2006, 19(10):1059-1068. doi: 10.1016/j.mineng.2006.04.001
    [12]
    DHAINAUT M, TETLIE P, BECH K. Modeling and Experimental Study of a Stirred Tank Reactor[J]. International Journal of Chemical Reactor Engineering, 2006, 3(1):1610-1624. http://pubs.rsc.org/en/Content/ArticleLanding/2013/CP/C3CP53335B#!divAbstract
    [13]
    刘政, 张嘉艺, 邓可月.基于Fluent的电磁场中铝熔液及其微粒运动轨迹的数值模拟[J].有色金属科学与工程, 2015(4):46-51. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201504010
    [14]
    黄金堤, 黄茜琳, 李亮星, 等.铜闪速吹炼过程颗粒行为仿真研究[J].山西冶金, 2012, 35(6):4-6. http://www.cnki.com.cn/Article/CJFDTOTAL-SDYZ201206002.htm
    [15]
    钟丽. 搅拌槽内固-液悬浮的数值模拟[D]. 北京化工大学, 2003. http://cdmd.cnki.com.cn/Article/CDMD-10010-2004140419.htm
    [16]
    陈猛. 热管搅拌釜数值模拟及结构优化[D]. 郑州大学, 2014. http://www.cqvip.com/QK/95836X/201409/662136188.html
    [17]
    耿战辉, 马秀玲, 王飞, 等.冷加工即食棒配方的SPSS正交设计优化[J].计算机与应用化学, 2014, 31(3):353-356. http://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201403022.htm
    [18]
    饶运章, 张学焱.基于Logistic回归模型确定权重的模糊综合评判法在边坡稳定性分析中的应用[J].有色金属科学与工程, 2015, 6(6):111-115. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201506020
    [19]
    LIU R, ZHANG Y, CHONGWEI A W. The application of SPSS 16.0 to the technological optimization of organic synthesis[J]. Computers & Applied Chemistry, 2009, 26(3):379-381.
    [20]
    TEKER G T, GULER N, UYANIK G K. Comparing the Effectiveness of SPSS and EduG Using Different Designs for Generalizability Theory[J]. Educational Sciences Theory & Practice, 2015, 15(3):635-645. https://eric.ed.gov/?id=EJ1067430
  • Related Articles

    [1]CHEN Fei, ZHANG Shibin, XIE Yunzhong, WANG Junfeng. Orthogonal test of compound soil curing agents in ionic rare-earth heap leaching sites[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 887-894. DOI: 10.13264/j.cnki.ysjskx.2023.06.017
    [2]DAI Kun, WANG Zhigang, YE Jieyun, CHEN Jiqiang, HE Changwei a, XIONG Kezhi a. Effects of electromagnetic stirring on the primary/eutectic phase and mechanical properties of Al-14Ce alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 716-727. DOI: 10.13264/j.cnki.ysjskx.2023.05.015
    [3]HUANG Chengge, TANG Daowen, CAI Pengyuan, XIONG Huakang, HUANG Biao. Orthogonal test on the leaching of a refractory gold ore in Guizhou province by bleaching powder[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 97-103. DOI: 10.13264/j.cnki.ysjskx.2020.02.014
    [4]ZHAO Lv, ZHU Jun, JIANG Xiang, ZHANG Lei, ZHANG Tingliang. Optimization experiment and production practice of leaching process in zinc hydrometallurgy[J]. Nonferrous Metals Science and Engineering, 2019, 10(6): 25-30. DOI: 10.13264/j.cnki.ysjskx.2019.06.005
    [5]WAN Zhanghao, XU Zhifeng, HUANG Jindi, YAN Kang. Three-phase stirring simulation of H2SO4-O2-copper anode slime and grey comprehensive evaluation in vertical reactor[J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 21-28. DOI: 10.13264/j.cnki.ysjskx.2018.04.004
    [6]ZHANG Ying, ZHANG Ting'an. Extraction of vanadium from the leaching solution from convertervanadium slag without roasting using N1923[J]. Nonferrous Metals Science and Engineering, 2015, 6(6): 14-19. DOI: 10.13264/j.cnki.ysjskx.2015.06.003
    [7]YANG Zhiqiang, XIONG Liangfeng, FANG Lin, GAO Qian, TIAN Lipeng. Preparation of new filling cementing materials with sintering desulfurization ash[J]. Nonferrous Metals Science and Engineering, 2015, 6(1): 8-12. DOI: 10.13264/j.cnki.ysjskx.2015.01.002
    [8]HUANG Jiaquan, WANG Yaping, WANG Huatai, PENG Tangjian, WU Xueling, ZHOU H ongbo, ZENG Weimin. Sulphuric acid leaching of Yulong oxide copper ore based on orthogonal design test[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 123-129. DOI: 10.13264/j.cnki.ysjskx.2014.05.023
    [9]RAO Yun-zhang, WANG Chun-hua, HUANG Tie-ping, PENG Le-ping. The optimization of blasting parameters in the medium depth hole in a limestone mine[J]. Nonferrous Metals Science and Engineering, 2011, 2(6): 47-51.
    [10]LI Zhao-hui, ZHOU Jian-hua. The Leaching Test Indoor of Ore Oxides in Wushan Copper Mine[J]. Nonferrous Metals Science and Engineering, 2004, 18(3): 22-23.

Catalog

    Article Metrics

    Article views (47) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return