Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
FEI Hua, SHI Jinming, LI Yuanlin, LIU Yang. Precipitation characteristics of alkali metal of aquatic biomass in Poyang Lake during pyrolysis[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 139-144. DOI: 10.13264/j.cnki.ysjskx.2017.01.024
Citation: FEI Hua, SHI Jinming, LI Yuanlin, LIU Yang. Precipitation characteristics of alkali metal of aquatic biomass in Poyang Lake during pyrolysis[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 139-144. DOI: 10.13264/j.cnki.ysjskx.2017.01.024

Precipitation characteristics of alkali metal of aquatic biomass in Poyang Lake during pyrolysis

More Information
  • Received Date: April 21, 2016
  • Published Date: February 27, 2017
  • Based on the pyrolysis experiments of typical aquatic biomass in Poyang Lake with tube furnace, the precipitation characteristics of alkali metal were studied. The results show that the highest releasing percentage of sedge and eichhornia crassipes during pyrolysis is more than 60 % for K and Na. K mainly exists with inorganic salt formation in eichhornia crassipes, and precipitates with inorganic salt formation in the middle and later stage of the pyrolysis reaction, Na precipitation rate was higher than K, which is mainly due to interfacial bond energy of Na lower than K. Meanwhile, aquatic biomass species are important factors for K and Na releasing ratio during pyrolysis, which is related with the combined forms of K and Na in aquatic biomass and sample structure. Dynamical model was finally constructed based on the K and Na releasing behavior of aquatic biomass during pyrolysis. Using the model, the K and Na releasing characteristics of the sedge and eichhornia crassipes pyrolysis processes were analyzed, and the K and Na releasing characteristics predicted by this model are more satisfying in depicting the experimental data. It indicates that dynamical model can be applied to predict the K and Na releasing characteristics of aquatic biomass during pyrolysis.
  • [1]
    白章, 刘启斌, 李洪强, 等.基于生物-太阳能气化的多联产系统模拟及分析[J].中国电机工程学报, 2015, 35(1): 112-118. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201501016.htm
    [2]
    谢大幸, 肖军, 谢玉荣, 等.基于生物质稻秸气化的催化剂研究[J].太阳能学报, 2011, 32(1): 8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201101004.htm
    [3]
    KEOWN D M, HAYASHI J I, LI C Z. Effects of volatile-char interactions on the volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass[J]. Fuel, 2008, 87(7): 1187-1194. doi: 10.1016/j.fuel.2007.05.056
    [4]
    JIANG L, HU S, XIANG J, et al. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process[J]. Bioresource Technology, 2012, 116(14): 278-284. http://d.scholar.cnki.net/detail/SJES_U/SJES13011501550461
    [5]
    李攀, 王贤华, 龚维婷, 等.金属盐添加剂对生物质微波热解特性的影响[J].农业机械学报, 2013, 44(6): 162-166. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201306029.htm
    [6]
    张艳平, 金保升, 刘仁平.玉米芯燃烧过程中碱金属析出迁移的影响因素分析[J].太阳能学报, 2009, 30(2): 261-265. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200902026.htm
    [7]
    杨昌炎, 姚建中, 吕雪松, 等.生物质中K+, Ca2+对热解的影响及机理研究[J].太阳能学报, 2006, 27(5): 452-457. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX200605015.htm
    [8]
    赵辉, 韩树新, 周劲松, 等.无机元素在生物质气流床气化中挥发性研究[J].太阳能学报, 2011, 32(4): 456-462. http://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201104003.htm
    [9]
    韩旭, 张岩丰, 姚丁丁, 等.生物质气化过程中碱金属和碱土金属的析出特性研究[J].燃料化学学报, 2014, 42(7): 792-798. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX201407005.htm
    [10]
    陈安合, 杨学民, 林伟刚.生物质热解和气化过程Cl及碱金属逸出行为的化学热力学平衡分析[J].燃料化学学报, 2007, 35(5): 540-547. http://www.cnki.com.cn/Article/CJFDTOTAL-RLHX200705006.htm
    [11]
    KEOWN D M, FAVAS G, HAYASHI J I, et al. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: Differences between sugar cane bagasse and cane trash[J]. Bioresource Technology, 2005, 96(14): 1570-1577. doi: 10.1016/j.biortech.2004.12.014
    [12]
    OKUNO T, SONOYAMA N, HAYASHI J I, et al. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass[J]. Energy Fuels, 2005, 19(5): 2164-2171. doi: 10.1021/ef050002a
    [13]
    开兴平, 杨天华, 孙洋, 等.稻秆与煤混燃过程中碱金属迁移转化规律研究[J].中国电机工程学报, 2012, 32(8): 133-138. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201208021.htm
    [14]
    石金明, 谢运生, 席细平, 等.典型生物质热解过程中碱(土) 金属转化特性[J].南昌大学学报(工科版), 2013, 35(3): 227-231.
    [15]
    EVERSON R, NEOMAGUS H, KAITANO R. The modelling of the combustion of high ash coal-char particles suitable for pressurized fluidized bed combustion: Shrinking reacted core model[J]. Fuel, 2005, 84(9): 1136-1143. doi: 10.1016/j.fuel.2005.01.011
    [16]
    WU H W, QUYN D M, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of vic torian brown coal. Part Ⅲ. The importance of the interactions between volatiles and char at high temperature[J]. Fuel, 2002, 81 (8): 1033-1039. doi: 10.1016/S0016-2361(02)00011-X
    [17]
    WOMAT M J, HURT R H, YANG N Y C, et al. Structural and compositional transformations of biomass chars during combustion[J]. Combustion and Flame, 1995, 100(1/2): 131-143. https://www.researchgate.net/publication/222216211_Structural_and_compositional_transformations_of_biomass_chars_during_combustion
    [18]
    FAHMI R, BRIDGWATER A V, DARVELL L I, et al. The effect of alkali metals on combustion and pyrolysis of lolium and festuca grasses, switch grass and willow[J]. Fuel, 2007, 86(10/11): 1560-1569. https://www.researchgate.net/publication/244067437_The_effect_of_alkali_metals_on_combustion_and_pyrolysis_of_Lolium_and_Festuca_grasses
    [19]
    杜胜磊, 杨海平, 钱柯贞, 等.生物质热解过程中碱及碱土金属迁徙规律研究[J].中国电机工程学报, 2013, 33(26): 48-53. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201326009.htm
  • Related Articles

    [1]YANG Xingyuan, CAI Yusheng, JIANG Muchi, REN Dechun, JI Haibin, LEI Jiafeng, XIAO Xuan. Influence of forging deformation on diffusion bonded TC4 titanium alloy[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 527-535. DOI: 10.13264/j.cnki.ysjskx.2023.04.011
    [2]MIN Dingwei, CHEN Gong, WEN Tanggen, SHI Zhongning, HUANG Yipeng, YANG Shaohua. Electrochemical mechanism of copper electrodeposition in NaCl-KCl-MgCl2-Cu2S melts[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 182-188. DOI: 10.13264/j.cnki.ysjskx.2023.02.004
    [3]YE Changmei, CHEN Gong, WEI Mingren, TIAN Yabin, HUANG Jingjing, WANG Zhaowen, YANG Shaohua. Electrochemical behavior of W6+ in NaCl-KCl-NaF-WO3 molten salt system[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 20-27. DOI: 10.13264/j.cnki.ysjskx.2019.01.004
    [4]YANG Shaohua, LIN Ming, LIU Zengwei, LI Linshan, ZHAO Yujuan. Electrochemical reduction mechanism of Zr4+ on tungsten electrode in LiF-CaF2-BaF2-ZrO2 molten salt[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 70-75. DOI: 10.13264/j.cnki.ysjskx.2017.05.010
    [5]Yang Fengli, Wang Haoran, Yang Shaohua, Wang Jun, Lai Xiaohui. The Study of Electrochemical Behavior of Sr2+ in LiF-SrF2-SrO Molten Salt System[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 33-36, 66. DOI: 10.13264/j.cnki.ysjskx.2016.05.006
    [6]LIAO Chunfa, FANG Mengzhao, WANG Xu, TANG Hao, LUO Linsheng. Square wave voltammetry analysis of NaCl-KCl-Na2WO4 communion system[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 6-9. DOI: 10.13264/j.cnki.ysjskx.2015.04.002
    [7]TANG Minkang, WANG Ting, HE Yong, WANG Lin, HE Ling, XIE Haiyang. Numerical simulation of chloride ions diffusion at circular cross-section concrete[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 105-110. DOI: 10.13264/j.cnki.ysjskx.2015.03.020
    [8]ZHU Da-chang, YAN Zhi-min, CUI Xiang-fu, LI Pei. The position analysis and control simulation of 3-RPS parallel robot[J]. Nonferrous Metals Science and Engineering, 2012, 3(1): 95-100. DOI: 10.13264/j.cnki.ysjskx.2012.01.005
    [9]SHEN Wen. Network Monitoring and Controlling System for Measurement Based on MODBUS[J]. Nonferrous Metals Science and Engineering, 2007, 21(2): 42-44.
    [10]ZHOU Ke-liang, LIANG Ling. Ration Pouring Control System for Lead Anode Plate Based on Profibus[J]. Nonferrous Metals Science and Engineering, 2006, 20(4): 21-23.
  • Cited by

    Periodical cited type(3)

    1. 张远景,刘兆庭,朱实贵,路贵民. LiCl-KCl-MgCl_2熔盐体系中Li-Mg共沉积机理研究. 有色金属科学与工程. 2023(03): 311-317 . 本站查看
    2. 卢精灵,徐存英,栗健茹,向琴琴,陈晓,华一新,张启波,李艳. Ni(Ⅱ)离子在两种离子液体中的电化学行为. 有色金属科学与工程. 2022(02): 1-9 . 本站查看
    3. 刘可心,王蕾,张海鸣,于洪杰,隋涛,金松哲. Cu/AlN/Cu梯度复合电极材料的制备及性能研究. 稀有金属. 2020(12): 1264-1270 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (63) PDF downloads (2) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return