Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
DENG Jujun, LIU Zheng, ZHU Tao. Process parameters of laser cladding iron-based coating iron-based coating[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 51-55,60. DOI: 10.13264/j.cnki.ysjskx.2015.03.010
Citation: DENG Jujun, LIU Zheng, ZHU Tao. Process parameters of laser cladding iron-based coating iron-based coating[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 51-55,60. DOI: 10.13264/j.cnki.ysjskx.2015.03.010

Process parameters of laser cladding iron-based coating iron-based coating

More Information
  • Received Date: November 20, 2014
  • Published Date: June 29, 2015
  • Comparative experiments of friction and wear were performed on MM-P2-screen friction and wear tester using laser cladding iron-based coating as the object of study. The morphology of cladding layer under different process parameters were studied by analyzing the changes of wear amount and cladding coating. The results show that the surface hardness are above 62 HRC after cladding coating, far higher than the hardness of substrate. Scanning speed and laser power are the most important factors affecting the morphology and quality of cladding layer. Energy density characterization results show the best abrasion resistance occurs when the energy density is around 60 J/mm2. The scope of the optimal process parameters are: laser power approximately 3.2 kW, the scanning speed around 300 mm/min. The results show that too high laser power and scanning speed also decrease the abrasion resistance of cladding layer.
  • [1]
    张勤俭, 赵路明, 刘敏之, 等.刀具涂层技术的研究现状和发展趋势[J].有色金属科学与工程, 2014, 5(2):20-25. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201402004
    [2]
    Qiu X W, Li G, Qiu L. The latest development and prospects of laser cladding technology[J]. Rare Metals and Cemented Carbides, 2008, 36(3): 54-57.
    [3]
    黄瑞芬, 罗建民, 王春琴.激光熔覆技术的应用及其发展[J].兵器材料科学与工程, 2005, 28(4): 57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200504018.htm
    [4]
    Aghasibeig M, Fredriksson H. Laser cladding of a featureless iron-based alloy[J]. Surface and Coatings Technology, 2012, 209(8): 32-37. http://www.docin.com/p-788505586.html
    [5]
    赵文强, 苗鸿宾, 游小红.矿用液压支柱的激光熔覆强化技术研究[J].矿山机械, 2011, 39(12): 18-20. http://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201112007.htm
    [6]
    余菊美, 卢洵, 晁明举, 等.铁基合金激光熔覆层组织分布及开裂敏感性研究[J].应用激光, 2006, 26(3):175-177. http://www.cnki.com.cn/Article/CJFDTOTAL-YYJG200603009.htm
    [7]
    马运哲, 董世运, 徐滨士, 等.铁基合金激光熔覆技术工艺优化研究[J].中国表面工程, 2006, 19(5):154-160. http://www.cnki.com.cn/Article/CJFDTOTAL-BMGC2006S1041.htm
    [8]
    李宝灵, 温宗胤, 刘旭红, 等.激光熔覆技术应用于轴类零件表面修复的实验研究[J].应用激光, 2007, 27(4): 290-294. http://www.cnki.com.cn/Article/CJFDTOTAL-YYJG200704006.htm
    [9]
    Yu Y S, Ni H J, Wen J L. A study on laser cladding of iron-based alloy[J]. China Surface Engineering, 2004(4): 24-31.
    [10]
    Komvopoulos K, Nagarathnam K. Processing and characterization of laser-cladded coating materials[J]. Journal of Engineering Materials and Technology, 1990, 112(2): 131-143. doi: 10.1115/1.2903299
    [11]
    Emamian A, Corbin S F, Khajepour A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings[J]. Surface and Coatings Technology, 2010, 205(7): 2007-2015. doi: 10.1016/j.surfcoat.2010.08.087
    [12]
    吴钢, 刘宝, 宋光明.激光工艺参数对表面硬度影响规律的研究[J].机械工人, 2005, 26(1):59-61. http://www.cnki.com.cn/Article/CJFDTOTAL-JXRG20050100S.htm
    [13]
    李养良, 潘东, 杜大明, 等.激光工艺参数对45#钢表面熔覆层组织及硬度的影响[J].应用激光, 2009, 29(5):398-401. http://www.cnki.com.cn/Article/CJFDTOTAL-YYJG200905009.htm
    [14]
    朱刚贤, 张安峰, 李涤尘.激光熔覆工艺参数对熔覆层表面平整度的影响[J].中国激光, 2010, 37(1):296-301. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201001056.htm
    [15]
    Bo X, Wei T. The geometrical features of single laser cladding for the green remanufacturing[J]. Applied Laser, 2010(4):2. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYJG201004002.htm
  • Related Articles

    [1]ZHANG Jinfeng, CUI Yaru, HE Xihong, LI Linbo, ZHANG Feiyu, LYU Chaofei, ZHOU Yufei. Pre-removal and kinetic analysis of copper from anode slime by oxidation at atmospheric pressure[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 615-623. DOI: 10.13264/j.cnki.ysjskx.2023.05.003
    [2]ZENG Yanliang, HUO Ruihao, ZOU Jianbai, LIAO Chunfa, LIU Fupeng. Thermodynamic analysis on selective separation of Selenium from compound leaching slag of copper anode slime[J]. Nonferrous Metals Science and Engineering, 2023, 14(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2023.01.001
    [3]YU Shan, FANG Mengzhao, NING Rui, LI Wei, WAN Jincheng, WANG Xiaochun. Reduction of valuable metal loss in copper anode slime process[J]. Nonferrous Metals Science and Engineering, 2018, 9(2): 25-29. DOI: 10.13264/j.cnki.ysjskx.2018.02.005
    [4]PAN Rongxuan, HUANG Jindi, XU Zhifeng. Stirring process simulation and orthogonal optimization of vertical reactor for copper anode mud leaching[J]. Nonferrous Metals Science and Engineering, 2017, 8(4): 12-18. DOI: 10.13264/j.cnki.ysjskx.2017.04.003
    [5]WANG Xiaoping, ZHU Peidong, DENG Tongfa, Zhou Shengfeng, Zi Yanke. Influence of mineral admixture on cement mortar to ammonium sulfate corrosion and grey relational analysis[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 108-113. DOI: 10.13264/j.cnki.ysjskx.2015.05.020
    [6]GAO Xiang, WU Xianzhen, YIN Libing, LIU Jianwei, LIU Xiangxin. AIRT evolution features in the process of sandstone loading based on gray correlation[J]. Nonferrous Metals Science and Engineering, 2015, (2): 67-71. DOI: 10.13264/j.cnki.ysjskx.2015.02.013
    [7]LIAO Lile, GUO Xueyi, WANG Qinmeng, TIAN Qinghua, ZHANG Yongzhu. Performance analysis of oxygen bottom blowing copper smelting process using METSIM[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 49-55. DOI: 10.13264/j.cnki.ysjskx.2014.05.009
    [8]ZENG Peng, ZHAO Kui, DENG Xiao-ping, SHAO Hai, WANG Ming, WU Yue-sheng, GAO Zhong. Grey correlation analysis between rock's chemical elements and compressive strength[J]. Nonferrous Metals Science and Engineering, 2013, 4(1): 79-82, 100. DOI: 10.13264/j.cnki.ysjskx.2013.01.001
    [9]DU Yan-lin, HE Wei-min, SHI Lin-ke. Gray Correlative Analysis of Factors Impacting on Shear Wave Velocity of Soil in Eastern Zhengzhou[J]. Nonferrous Metals Science and Engineering, 2009, 23(3): 12-14.
    [10]HU Shao_hua. Practice and Process of Treating High Bismuth Copper Anode Slime[J]. Nonferrous Metals Science and Engineering, 2003, 17(3): 31-33.

Catalog

    Article Metrics

    Article views (63) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return