Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Song, XIE Ming, CHEN Yongtai, ZHANG Jiming, WANG Saibei. Arc erosion characteristics of Al2O3La2O3Y2O3/Cu composite[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 28-31. DOI: 10.13264/j.cnki.ysjskx.2014.04.006
Citation: WANG Song, XIE Ming, CHEN Yongtai, ZHANG Jiming, WANG Saibei. Arc erosion characteristics of Al2O3La2O3Y2O3/Cu composite[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 28-31. DOI: 10.13264/j.cnki.ysjskx.2014.04.006

Arc erosion characteristics of Al2O3La2O3Y2O3/Cu composite

More Information
  • Received Date: June 14, 2014
  • Published Date: August 30, 2014
  • Al2O(La2O3Y2O3/Cu composites are prepared by spray deposition and internal oxidation. The arc erosion phenomena of this composite contact in direct current state of 20 Y/20 A are studied, and comparative analysis with Al2O(/Cu composites are carried out. The changes of the contact material weighing and surface microstructure of the contact after arc erosion are investigated by electronic balance and SEM. It can be concluded that adding Y2O3, La2O3 rare earth oxide particles can effectively reduce the amount of material transfer of the contact. The welding resistance and anti-burning of Al2O(La2O3Y2O3/Cu composite are superior to that of Al2O(/Cu composite. Under direct current resistance load condition, the anode contact surface forms pits while the cathode contact surface forms projection, and there are two arc erosion morphological characters, i.e. starchiness coagulum and eruption pits on the contact surface of Al2O(La2O3Y2O3/Cu composite.
  • [1]
    程建奕,汪明朴,钟卫佳,等. 内氧化法制备的Cu-Al2O3合金的显微组织与性能[J]. 材料热处理学报, 2003, 24(1): 23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201605005.htm
    [2]
    郭明星,汪明朴,李周,等. 纳米Al2O3 粒子浓度对弥散强化铜合金退火行为的影响[J]. 功能材料, 2006, 37(3): 428-430. http://cdmd.cnki.com.cn/Article/CDMD-10533-2006036780.htm
    [3]
    李斌,刘贵民,丁华东,等. 弥散强化铜合金的研究现状[J]. 材料导报, 2012, 26(17): 107-111. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200402010.htm
    [4]
    燕鹏,林晨光,崔舜,等. 弥散强化铜合金的研究与应用现状[J]. 材料导报, 2011, 25(11): 101-106. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201111023.htm
    [5]
    GUO Mingxing, WANG Mingpu, LEI Ruoshan, et al. Comparison study on the annealing behaviors of dispersion strengthened copper alloys with different nanoparticles[J]. Rare Metals, 2007, 26(5): 456-462. doi: 10.1016/S1001-0521(07)60245-9
    [6]
    李玉娟,王晓伟,任凤章,等. 内氧化法制备Cu-Al2O3复合材料的组织性能[J]. 河南科技大学学报(自然科学版), 2014, 35(1): 9-12. http://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201401004.htm
    [7]
    徐晓峰,宋克兴,刘瑞华,等.内氧化法制备Al2O3/Cu复合材料电滑动磨损性能的研究[J]. 摩擦学学报, 2008, 28(1): 83-87. http://www.cnki.com.cn/Article/CJFDTOTAL-MCXX200801015.htm
    [8]
    乔志佳,薛丽红,严有为,等. 反应球磨辅助放电等离子烧结制备超细Al2O3颗粒增强Cu基复合材料[J]. 材料热处理学报, 2013,34(9): 13-18. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201309003.htm
    [9]
    丁飞,凤仪,钱刚,等. 原位合成法制备Cu-Al2O3复合材料及其性能研究[J]. 材料导报, 2014, 28(8): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201408018.htm
    [10]
    范启义,凌国平,郦剑,等. 化学镀铜法制备纳米Cu-Al2O3复合粉体的研究[J]. 材料科学与工艺, 2002, 10(4): 357-361. http://www.cnki.com.cn/Article/CJFDTOTAL-CLKG200204005.htm
    [11]
    程建奕,汪明朴,李周,等.Cu-Al2O3纳米弥散强化铜合金的短流程制备工艺及性能[J]. 材料科学与工艺, 2005, 13(2): 127-130. http://www.cnki.com.cn/Article/CJFDTOTAL-CLKG200502005.htm
    [12]
    SHEN Yutian, ZHU Jing, XU Yanji, et al. Fabrication of an in-situ nano-Al2O3/Cu composite with high strength and high electric conductivity[J]. Rare Metals, 2005, 24(1): 46-54.
    [13]
    张雪辉,林晨光,崔舜,等. SPS制备Al2O3-弥散强化铜合金及其显微组织[J]. 材料热处理学报, 2013, 34(11): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201311001.htm
    [14]
    付云龙,龚红英,宋克星,等. 纳米颗粒弥散强化铜基复合材料的显微组织与性能[J]. 上海工程技术大学学报, 2012, 26(3): 259-262. http://www.cnki.com.cn/Article/CJFDTOTAL-SGCJ201203016.htm
    [15]
    Hwang S J, Lee J H. Mechanochemical synthesis of Cu-Al2O3 nanocomposites[J]. Materials Science & Engineering A, 2005, 405(1/2): 140-146.
  • Related Articles

    [1]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [2]ZHANG Chuanqun, ZHOU Qin, XU Chong, LIU Xin, TAN Ying, HUANG Weiya. Morphology control of Bi2MoO6 and the research progress of its application[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 56-65. DOI: 10.13264/j.cnki.ysjskx.2021.02.008
    [3]DUAN Bohua, ZHANG Zhao, YANG Donglin, WANG Dezhi. Effect of microwave sintering on microstructure and properties of 6% Al2O3/Mo composite material[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 59-65. DOI: 10.13264/j.cnki.ysjskx.2019.04.010
    [4]DONG Liang, GUO Feng, WANG Mingyong. Surface morphology and mechanical properties of Ni foils electrodeposited under super gravity[J]. Nonferrous Metals Science and Engineering, 2019, 10(3): 26-33. DOI: 10.13264/j.cnki.ysjskx.2019.03.005
    [5]LIU Wenyang, ZHANG Jianbo, WU Shanjiang, HU Meijun, CHEN Tingting, GUO Lili. Effects of Si on friction properties of Ti3SiC2/Al composites[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 89-94. DOI: 0.13264/j.cnki.ysjskx.2017.05.013
    [6]LIU Zheng, BAI Guangzhu, LUO Haolin. Refining mechanism of rare earth Y on primary phase Mg2Si in-situ Mg2Si/Al composites[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2016.01.007
    [7]TONG Zhifang, JIANG Xiyuan, CHEN Tao. Effect of Composition on Sulfur Partition Ratio between CaO-Al2O3-SiO2-TiO2-MgO-Na2O slags and HotIron[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 5-10. DOI: 10.13264/j.cnki.ysjskx.2016.01.002
    [8]WANG Song, XIE Ming, LI Aikun, ZHU Gang, WANG Saibei, YANG Youcai, CHEN Song. Preparation and Performance Study of a New Type of Ag-CNTs Electrical Contact Material[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.05.008
    [9]XU Bingsheng, WU Hu, HAN Lin, CHEN Junwei, YUAN Zhangfu. Simulation analysis on the surface morphology of Sn-3.0Ag-0.5Cu melting on the inclined Cu substrate[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 7-12. DOI: 10.13264/j.cnki.ysjskx.2014.04.002
    [10]YANG Yi-wen, CHEN Hui-zong. Catalytic Synthesis of N-amyl Acetate by RE Composite Solid Superacid SO42-/ZrO2- 2% Gd2O3[J]. Nonferrous Metals Science and Engineering, 2006, 20(2): 26-28.

Catalog

    Article Metrics

    Article views (63) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return