Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HE Gui-chun, JIANG Wei, XIANG Hua-mei, QI Mei-chao, KANG Qian. Density functional theory and its application in mineral processing[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 62-66. DOI: 10.13264/j.cnki.ysjskx.2014.02.011
Citation: HE Gui-chun, JIANG Wei, XIANG Hua-mei, QI Mei-chao, KANG Qian. Density functional theory and its application in mineral processing[J]. Nonferrous Metals Science and Engineering, 2014, 5(2): 62-66. DOI: 10.13264/j.cnki.ysjskx.2014.02.011

Density functional theory and its application in mineral processing

More Information
  • Received Date: December 25, 2013
  • Published Date: April 29, 2014
  • The exploration to the mineral internal structure and microscopic properties becomes a reality with the development of quantum chemistry theory especially the density functional theory (DFT)being put forward and fully developed and the improvement of computing hardware.This paper introduces the DFT and elaborates its applications to the mineral surface, the mineral structure and the reagents in detail. The influence of the mineral surface microscopic properties, the mineral internal structure and the interaction relationship between reagent molecules and minerals on the microscopic properties is obtained by applying quantum chemistry calculation to the mineral surface, mineral structure and flotation reagent.DFT should be combined with specific experiment and spectroscopy methods to provide a solid and reliable theoretical basis to mineral processing.
  • [1]
    Foresman J B;Frisch A. Exploring chemistry with electronic structure methods[M]. Pittsburgh:Gaussian,Inc.,1996.
    [2]
    陈建华.硫化矿物浮选晶格缺陷理论[M].长沙:中南大学出版社,2012.
    [3]
    赵成大.固体量子化学[M].北京:高等教育出版社,2003.
    [4]
    陈光巨,黄元河.量子化学[M].上海:华东理工大学出版社,2008.
    [5]
    曾谨言.量子化学[M].北京:科学出版社,2000.
    [6]
    陈正隆,孙小强.量子化学[M].南京:南京大学出版社,2007.
    [7]
    Szabo A,Ostlund N S. Modern Quantum Chemistry[M]. New York: Dover Publications, 1996.
    [8]
    陈飞武.量子化学中的计算方法[M].北京:科学出版社,2008.
    [9]
    赵成大.量子化学中的场论方法[M].长春:东北师范大学出版社,2007.
    [10]
    林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [11]
    Kaxiras E,Atomic and Electronic Structure of Solids[M]. New York:Cambridge University Press, 2003.
    [12]
    徐光宪,黎乐民,王德民.量子化学——基本原理和从头计算法[M].北京:科学出版社,2009.
    [13]
    ]刘靖疆.基础量子化学与应用[M].北京:高等教育出版社,2004.
    [14]
    林梦海.量子化学简明教程[M].北京:化学工业出版社,2005.
    [15]
    Cramer C J.Essentials of Computational Chemistry Theories and Models[M]. Chichester:John Wiley & Sons Ltd., 2004.
    [16]
    Kohn W,Sham L.J.. Self-Consistent Equations Exchange and Correlation Effects[J].Physical Review, 1965,140(11):1133-1138.
    [17]
    Parr R G,Yang W. Density-Functional Theory of Atoms and Molecules[M]. London:Oxford University Press, 1989.
    [18]
    Perdew J P,Schmidt K. Jacob's ladder of density functional approximations for the exchange-correlation energy[C]// Doren V V, Alsenoy V C,Geerlings P. Density Functional Theory and Its Application to Materials:AIP Conference Proceedings. New York: AIP Publishing,2001:1-20.
    [19]
    Perdew J P,Kurth S. Density Functionals for Non-relativistic Coulomb Systems in the New Century[R]// Fiolhais C, Nogueira F,Marques M. A Primer in Density Functional Theory:Lecture Notes in Physics. New York: Springer,2003:1-51.
    [20]
    Szasz L. Pseudopotential Theory of Atoms and Molecules[M]. New York: John Wiley & Sons Ltd.,1985.
    [21]
    Wood J.H.,Boring M A. Improved Pauli Hamiltonian for local-potential problems[J].Physical Review B, 1978,18(9):2701-2711. http://cn.bing.com/academic/profile?id=1974601195&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Hohenberg P,Kohn W. Inhomogeneous Electron Gas[J]. Physical Review,1964,136(11):864-871. http://cn.bing.com/academic/profile?id=2007833519&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    Hafner J. Ab-Initio Simulations of Materials Using VASP: Density-Functional Theory and Beyond[J].Journal of Computational Chemistry, 2008,29(13): 2044-2078. doi: 10.1002/jcc.v29:13
    [24]
    曾振华,邓辉球,李微雪,等. O在Au(111)表面吸附的密度泛函理论研究[J].物理学报,2006,55(6):3157-3164. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200606088.htm
    [25]
    洪汉烈,闵新民,付正义. 含金络合离子[ Au( Sb2S4) ]-在高岭石表面吸附的量子化学研究[J].矿物学报,2001,21(3):515-518. http://mall.cnki.net/magazine/Article/KWXB200103056.htm
    [26]
    李玉琼,陈建华,陈晔,等. 黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J].中国有色金属学报,2011,21(4):919-926. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201104032.htm
    [27]
    陈建华,钟建莲,李玉琼,等. 黄铁矿、白铁矿和磁黄铁矿的电子结构及可浮性[J].中国有色金属学报,2011,21(7):1719-1727. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201107032.htm
    [28]
    李玉琼,陈建华,郭进. 天然杂质对黄铁矿的电子结构及催化活性的影响[J].物理学报,2011,60(9):650-657. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201109098.htm
    [29]
    陈建华,陈晔,李玉琼. 氧化锌浮选中伯胺阳离子捕收剂的密度泛函理论计算[J].广西大学学报:自然科学版,2009,34(1):67-71. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ200901016.htm
    [30]
    刘臻,刘够生,于建国. 云母表面吸附烷基伯胺对其疏水性的影响[J].物理化学学报,2012,28(1):201-207. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201201030.htm
  • Related Articles

    [1]MAO Linghan, YU Xinyang, WEI Xin'an, XIE Honghui, CHEN Shuhua. Application and mechanism of organosilicon collector TAS550 for desilication and purification of magnetite by reverse flotation[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 285-292. DOI: 10.13264/j.cnki.ysjskx.2024.02.015
    [2]AI Guanghua, CAI Xin, BI Kangying, LI Jing, TIAN Yuechao, ZHANG Ruidong. Research progress on the effect of metal ions on mineral flotation behavior[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 70-74. DOI: 10.13264/j.cnki.ysjskx.2017.06.011
    [3]ZHOU Lihua, CHEN Zhiyong, FENG Bo, GUO Wei, LUO Xianping. Research status and prospect of fluorite flotation reagents[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 91-97. DOI: 10.13264/j.cnki.ysjskx.2016.04.016
    [4]Guichun He YaHe, Hua Yanan, Jiang Wei, zhang Bing. Molecular dynamics simulation and its application in mineral processing[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 91-96. DOI: 10.13264/j.cnki.ysjskx.2015.05.017
    [5]HE Guichun, WANG Yutong, KANG Qian. Application of nanotechnology in micro-fine mineral flotation[J]. Nonferrous Metals Science and Engineering, 2015, 6(2): 57-62. DOI: 10.13264/j.cnki.ysjskx.2015.02.011
    [6]WENG Cunjian, MA Pengfei, WANG Pengcheng, FENG Bo, ZHOU Xiaowen, LUO Xianping. Research progress of beneficiation technology for China's copper sulfide ore[J]. Nonferrous Metals Science and Engineering, 2014, 5(5): 117-122. DOI: 10.13264/j.cnki.ysjskx.2014.05.022
    [7]XU Hongguo, WENG Cunjian, GAO Li, FENG Bo, LUO Xianping. Research situation and prospects of scheelite flotation reagents[J]. Nonferrous Metals Science and Engineering, 2014, 5(3): 76-80. DOI: 10.13264/j.cnki.ysjskx.2014.03.014
    [8]HU Wen-ying, YU Xin-yang. Research status of ultrafine wolframite flotation[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 102-107. DOI: 10.13264/j.cnki.ysjskx.2013.05.015
    [9]CAO Xue-feng, BAI Ding, CHEN Chen. Influences of waterglass on the flotation properties of three typical calcium minerals[J]. Nonferrous Metals Science and Engineering, 2013, 4(5): 64-69. DOI: 10.13264/j.cnki.ysjskx.2013.05.010
    [10]HUANG Wan-fu, WEN Jin-lei, CHEN Yuan-yuan. Research status and prospects on flotation reagents and techniques of rare-earth ore[J]. Nonferrous Metals Science and Engineering, 2012, 3(6): 75-80, 89. DOI: 10.13264/j.cnki.ysjskx.2012.06.015

Catalog

    Article Metrics

    Article views (60) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return