Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
MA Wenqing, LI Canhua, DU Gang, LI Jiamao, LI Minghui. Preparation of aluminate cement by using the secondary aluminum ash as a partial substitute for alumina[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 527-534. DOI: 10.13264/j.cnki.ysjskx.2024.04.007
Citation: MA Wenqing, LI Canhua, DU Gang, LI Jiamao, LI Minghui. Preparation of aluminate cement by using the secondary aluminum ash as a partial substitute for alumina[J]. Nonferrous Metals Science and Engineering, 2024, 15(4): 527-534. DOI: 10.13264/j.cnki.ysjskx.2024.04.007

Preparation of aluminate cement by using the secondary aluminum ash as a partial substitute for alumina

More Information
  • Received Date: June 18, 2023
  • Revised Date: September 20, 2023
  • In response to the scarcity and high cost of bauxite, a raw material for aluminate cement, this study explored the feasibility of preparing aluminum cement by using secondary aluminum ash as a substitute for bauxite. The calcination experiment results showed that the optimal preparation conditions were an Al2O3 content of 60%, a calcination temperature of 1 350 ℃, and an insulation time of 1 h. The aluminate cement samples were mixed with standard sand for natural curing. SEM and EDS analysis were conducted on the hydrated aluminate cement samples at 3 and 28 d, respectively. Under these conditions, the mineral phases obtained in the aluminate cement clinker were dicalcium aluminate, gehlenite, and a small amount of tricalcium aluminate. The compressive strength of the aluminate cement hydrated for 28 d reached 85.5 MPa, and the flexural strength 11.5 MPa, proving that the secondary alumina ash can be used as a partial substitute for bauxite to prepare aluminate cement.

  • [1]
    JAFARI N H, STARK T D, ROPER R. Classification and reactivity of secondary aluminum production waste[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2014, 18(4): 04014018.
    [2]
    吕梓阳, 刘爱民, 余愿, 等. 物理富集-熔盐电解法从二次铝灰回收金属铝[J]. 有色金属科学与工程, 2022, 13(6): 25-33.
    [3]
    晁曦, 张廷安, 张宇斌, 等. 二次铝灰酸浸制备聚合氯化铝的研究[J]. 有色金属科学与工程, 2021, 12(5): 1-9.
    [4]
    雷炳宏, 刘宏辉, 张笛, 等. 二次铝灰硫酸铵焙烧提铝过程氟的迁移规律[J]. 过程工程学报, 2022, 22(1): 108-117.
    [5]
    ABDULKADIR A, AJAYI A, HASSAN M I. Evaluating the chemical composition and the molar heat capacities of a white aluminum dross[J]. Energy Procedia, 2015, 75: 2099-2105.
    [6]
    韩金珊, 左正平, 赵洪亮, 等. 二次铝灰处置及利用现状及其在炼钢中的应用[J]. 中国冶金, 2022, 32(5): 16-24.
    [7]
    滕家阳, 冯庆革, 张璇, 等. 铝灰资源化制备拟薄水铝石的研究[J]. 无机盐工业, 2023(6): 1-14.
    [8]
    TANG S W, ZHU H G, LI Z J, et al. Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age[J]. Construction and Building Materials, 2015, 75: 11-18.
    [9]
    汪小平, 朱沛东, 邓通发, 等. 矿物掺合料对水泥砂浆抗硫酸铵腐蚀的影响及灰色关联分析[J]. 有色金属科学与工程, 2015, 6(5): 108-113.
    [10]
    王思纯, 廖宜顺, 万世辉. 不同温度下矿渣对铝酸盐水泥早期水化行为的影响[J]. 硅酸盐通报, 2022, 41(4): 1343-1351.
    [11]
    李辉, 刘海燕, 周茜, 等. 粉煤灰对铝酸盐水泥和硅酸盐水泥耐热性能的影响[J]. 硅酸盐通报, 2018, 37(2): 607-612.
    [12]
    SON H M, PARK S M, JANG J G, et al. Effect of nano-silica on hydration and conversion of calcium aluminate cement[J]. Construction and Building Materials, 2018, 169: 819-825.
    [13]
    韩金珊, 左正平, 赵洪亮, 等. 二次铝灰处置及利用现状及其在炼钢中的应用[J]. 中国冶金, 2022, 32(5): 16-24.
    [14]
    张勇, 何小娟, 喻成龙, 等. 二次铝灰烧结制备镁铝尖晶石材料[J]. 有色金属科学与工程, 2021, 12(6): 42-49.
    [15]
    丁敏. 二次铝灰火法解毒与氧化铝清洁提取工艺研究[D]. 郑州: 郑州大学, 2022.
    [16]
    钟文. 铝灰替代部分高铝矾土生产铝酸盐水泥CA50的研究[D]. 绵阳: 西南科技大学, 2018.
    [17]
    王复生. 现代水泥生产基本知识[M]. 北京: 中国建材工业出版社, 2004.
    [18]
    张康康, 马淑龙, 苏玉柱, 等. 烧成温度对钛基铝酸盐水泥性能的影响[J]. 耐火材料, 2023, 57(2): 166-168.
    [19]
    杨欢, 齐砚勇, 高宇蕾, 等. 煅烧温度对水泥熟料矿物相含量及形貌影响的Rietveld法研究[J]. 硅酸盐通报, 2021, 40(9): 2871-2876.
    [20]
    CHRISTOPHER P, CHRISTOPH W, BENOIT V, 等. 铝酸盐水泥水化机理的分析及对不定形耐火材料性能的影响[C]//2004年全国耐火材料综合学术年会. 北京: 中国金属学会, 2004.
    [21]
    石志平, 姜澜, 杨洪亮, 等. 铝灰的回收处理及资源化利用研究现状[J]. 无机盐工业, 2020, 52(9): 21-25.
    [22]
    魏杰, 刘战伟, 颜恒维, 等. 铝灰的回收利用和无害化处理研究及应用进展[J]. 硅酸盐通报, 2022, 41(7): 2308-2320.
    [23]
    曹云霄, 王志强, 李国锋, 等. 工业铝灰资源化利用及管理政策研究现状与展望[J]. 环境保护科学, 2020, 46(4): 128-136.
    [24]
    李春, 张创, 南宁, 等. GO改性掺尾矿胶砂试块的抗压强度及水化产物[J]. 非金属矿, 2022, 45(6): 46-49.
  • Related Articles

    [1]FENG Qiang, LI Jian. Advances in electrocatalytic CO2 reduction with copper-based catalysts[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 364-382. DOI: 10.13264/j.cnki.ysjskx.2024.03.007
    [2]DOU Zhongkun, ZHANG Jialiang, CHEN Yongqiang, WANG Chengyan. Separation of molybdenum and nickel from acidic leaching solution of melted alloy of waste hydrogenation catalyst by solvent extraction[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 1-7. DOI: 10.13264/j.cnki.ysjskx.2024.01.001
    [3]LIU Li, YANG Tianhui, ZHOU Xi, MENG Ranhao. Effect of hydride on the hydrogen storage performance of Mg2Ni based alloys[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 825-832. DOI: 10.13264/j.cnki.ysjskx.2023.06.010
    [4]GUO Ziting, HUANG Jinchao, XIAO Qingmei, ZHONG Shengwen. Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LiNi0.5Co0.2Mn0.3O2 lithium-ion battery[J]. Nonferrous Metals Science and Engineering, 2023, 14(2): 227-234. DOI: 10.13264/j.cnki.ysjskx.2023.02.009
    [5]WANG Buxiang, SHU Qing. Research progress in single-atomic electrocatalytic hydrogen evelution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 92-100. DOI: 10.13264/j.cnki.ysjskx.2022.05.011
    [6]YU Boyuan, ZHANG Jialiang, YANG Cheng, WANG Lihua, CHEN Yongqiang, WANG Chengyan. Research advances on valuable metals recovery from spent hydrogenation catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 16-24, 51. DOI: 10.13264/j.cnki.ysjskx.2020.05.003
    [7]YE Shewen, PENG Wenkun, PENG Ziyang, OU Ziran, GUO Ziting, ZENG Qinqin, YANG Hui. Nitrogen-doped carbon-supported ultrafine molybdenum carbide hydrogen evolution reaction catalyst[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 33-38. DOI: 10.13264/j.cnki.ysjskx.2020.03.004
    [8]DAI Yanni, LIU Gonggang, LI Wen, HAN Kai, ZHOU Yonghua, YE Hongqi. A core-shell structured Al-Si@Al2O3 as novel catalyst support and its catalytic application[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 42-48. DOI: 10.13264/j.cnki.ysjikx.2016.05.008
    [9]LU Lixin, WANG Xindong. Preparation and stability of patinum-loaded graphene catalyst[J]. Nonferrous Metals Science and Engineering, 2015, 6(3): 40-44. DOI: 10.13264/j.cnki.ysjskx.2015.03.008
    [10]YU Chang-lin, ZHANG Cai-xia, CHEN Xi-rong, XIAO You-jun. The Effects of Zr on the Performance of Pt-Sn/γ-Al2O3 Catalyst for Catalytic Dehydrogenation[J]. Nonferrous Metals Science and Engineering, 2010, 1(01): 24-26, 48.
  • Cited by

    Periodical cited type(2)

    1. 赵振刚,牛文辉,姚正银,侯敏杰,解志鹏,张达,梁风. 基于Na-BP-DME@C阳极的长寿命准固态钠-空气电池. 有色金属科学与工程. 2024(02): 204-211 . 本站查看
    2. 李梦雨,姜淑文,田艳. 碳化钨/碳复合纤维制备及其电解水析氢性能. 大连工业大学学报. 2024(02): 152-156 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (50) PDF downloads (10) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return