Citation: | LIU Chunlin, TANG Yanchuan, ZHANG Qingzhu, QIN Xinbao, LANG Pengjiang, ZHANG Xinlei. Effect of layer hardness ratio on strength and toughness of Cu-Be/Cu layered composite materials with heterostructure[J]. Nonferrous Metals Science and Engineering, 2024, 15(1): 67-79. DOI: 10.13264/j.cnki.ysjskx.2024.01.009 |
[1] |
姜业欣, 娄花芬, 解浩峰, 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84-92.
|
[2] |
雷前, 杨一海, 肖柱, 等. 高强高导高耐热铜合金的研究进展与展望[J]. 材料导报, 2021, 35(15): 15153-15161.
|
[3] |
代雪琴, 贾淑果, 范俊玲, 等. 高强高导铜合金的强化机理与研究热点[J]. 材料热处理学报, 2021, 42(10): 18-26.
|
[4] |
TANG Y C, KANG Y L, YUE L J, et al. Precipitation behavior of Cu-1.9 Be-0.3 Ni-0.15 Co alloy during aging[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 307-315.
|
[5] |
AHN H, HAN S Z, CHOI E A, et al. Simple optimization for strength and conductivity of Cu-Ni-Si alloy with discontinuous precipitation[J]. Materials Characterization, 2022, 184: 111605.
|
[6] |
刘若絮, 毛西秦, 欧梅桂, 等. 冷拉拔变形对纯铜组织及性能的影响[J]. 有色金属科学与工程, 2022, 13(2): 67-75.
|
[7] |
刘婷, 徐淑波, 秦振, 等. 剧烈塑性变形对块状镁合金微观组织和力学性能的影响[J]. 有色金属科学与工程, 2013, 4(4): 51-57.
|
[8] |
TANG Y C, KANG Y L, YUE L J, et al. Mechanical properties optimization of a Cu-Be-Co-Ni alloy by precipitation design[J]. Journal of Alloys and Compounds, 2017, 695: 613-625.
|
[9] |
范根莲, 郭峙岐, 谭占秋, 等. 金属材料的构型化复合与强韧化[J]. 金属学报, 2022, 58(11): 1416-1426.
|
[10] |
张显程, 张勇, 李晓, 等. 异构金属材料的设计与制造[J]. 金属学报, 2022, 58(11): 1399-1415.
|
[11] |
武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
|
[12] |
ZHU Y T, WU X L. Perspective on hetero-deformation induced (HDI) hardening and back stress[J]. Materials Research Letters, 2019, 7(10): 393-398.
|
[13] |
ZHU Y T, AMEYAMA K, ANDERSON P M, et al. Heterostructured materials: superior properties from hetero-zone interaction[J]. Materials Research Letters, 2021, 9(1): 1-31.
|
[14] |
WU X L, ZHU Y T. Gradient and lamellar heterostructures for superior mechanical properties[J]. MRS Bulletin, 2021, 46(3): 244-249.
|
[15] |
WU X L, YANG M, YUAN F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14501-14505.
|
[16] |
HUANG C X, WANG Y F, MA X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate[J]. Materials Today, 2018, 21(7): 713-719.
|
[17] |
WANG Y F, YANG M X, MA X L, et al. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates[J]. Materials Science and Engineering: A, 2018, 727: 113-118.
|
[18] |
LI J S, WANG S Z, MAO Q Z, et al. Soft/hard copper/bronze laminates with superior mechanical properties[J]. Materials Science and Engineering: A, 2019, 756: 213-218.
|
[19] |
XIA Y P, WU H, MIAO K S, et al. Effects of the layer thickness ratio on the enhanced ductility of laminated aluminum[J]. Journal of Materials Science & Technology, 2022, 111: 256-267.
|
[20] |
CHEN X, ZHANG B X, ZOU Q, et al. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy[J]. Journal of Materials Science & Technology, 2022, 100: 193-205.
|
[21] |
唐延川, 张欣磊, 柳春林, 等. Cu-Be/Cu层状非均质复合材料塑性变形行为的原位研究[J]. 华东交通大学学报, 2022, 39(3): 99-109.
|
[22] |
AFSHAR A, SIMCHI A. Flow stress dependence on the grain size in alumina dispersion-strengthened copper with a bimodal grain size distribution[J]. Materials Science and Engineering: A, 2009, 518(1/2): 41-46.
|
[23] |
ZHANG H T, JIANG Y B, XIE J X, et al. Precipitation behavior, microstructure and properties of aged Cu-1.7 wt% Be alloy[J]. Journal of Alloys and Compounds, 2019, 773: 1121-1130.
|
[24] |
TANG Y C, KANG Y L, YUE L J, et al. The effect of aging process on the microstructure and mechanical properties of a Cu-Be-Co-Ni alloy[J]. Materials & Design, 2015, 85: 332-341.
|
[25] |
耿林, 范国华. 金属基复合材料的构型强韧化研究进展[J]. 中国材料进展, 2016, 35(9): 686-693,701.
|
[26] |
HUANG M, XU C, FAN G, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite[J]. Acta materialia, 2018, 153: 235-249.
|
[27] |
孙甲鹏, 贾云飞, 张勇, 等. 强塑均衡金属材料精准设计及制备[J]. 机械工程学报, 2021, 57(16): 329-348, 360.
|
[28] |
MONDAL C, SINGH A K, MUKHOPADHYAY A K, et al. Tensile flow and work hardening behavior of hot cross-rolled AA7010 aluminum alloy sheets[J]. Materials Science and Engineering: A, 2013, 577: 87-100.
|
[29] |
TIAN Y Z, ZHAO L J, PARK N, et al. Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility[J]. Acta Materialia, 2016, 110: 61-72.
|
[30] |
WANG E H, KANG F W, WANG H B, et al. Fabrication, microstructure and mechanical properties of novel NiTi/(Al3Ti+ Al3Ni) laminated composites[J]. Journal of Alloys and Compounds, 2019, 775: 1307-1315.
|
[31] |
FANG X T, HE G Z, ZHENG C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass[J]. Acta Materialia, 2020, 186: 644-655.
|
[32] |
GAO B, HU R, PAN Z, et al. Strengthening and ductilization of laminate dual-phase steels with high martensite content[J]. Journal of Materials Science & Technology, 2021, 65: 29-37.
|
[33] |
LIU D, WANG J, WANG C, et al. Hetero-Deformation-Induced (HDI) plasticity induces simultaneous increase in both yield strength and ductility in a Fe50Mn30Co10Cr10 high-entropy alloy[J]. Applied Physics Letters, 2021, 119(13): 131906.
|
[34] |
ZHAO J F, ZAISER M, LU X C, et al. Size-dependent plasticity of hetero-structured laminates: A constitutive model considering deformation heterogeneities[J]. International Journal of Plasticity, 2021, 145: 103063.
|
[1] | YAO Mingcan, LI Tianyu, HU Jin, FU Fangzhong, LIN Jiahao, FAN Helin, WANG Ruixiang, XU Zhifeng. Structure and transport properties of FeO-SiO2 melt[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 17-24. DOI: 10.13264/j.cnki.ysjskx.2025.01.003 |
[2] | SU Yao, GUO Hanjie, GUO Jing, LUO Yiwa, LI Gang, YANG Qingsong, ZHENG Xiaodan. Effect of Ti content on solidification organization and non-metallic inclusions in 0Cr25Al5 electrothermal alloy[J]. Nonferrous Metals Science and Engineering, 2025, 16(1): 8-16. DOI: 10.13264/j.cnki.ysjskx.2025.01.002 |
[3] | GUO Hao, WANG Yajie, ZHAO Hongbo, ZUO Haibin. Numerical simulation of pulverized coal forming process[J]. Nonferrous Metals Science and Engineering, 2024, 15(3): 357-363. DOI: 10.13264/j.cnki.ysjskx.2024.03.006 |
[4] | HU Yujun, ZHANG Yinghui, AI Di, ZHANG Bing, KUANG Junping. Research on process parameters of CuSi3Mn alloy under upward continuous casting[J]. Nonferrous Metals Science and Engineering, 2023, 14(6): 833-842. DOI: 10.13264/j.cnki.ysjskx.2023.06.011 |
[5] | XIE Fanghao, LI Jianan, DENG Shenghua, LI Weirong. The microstructure and mechanical properties of selective laser melted Al-Zn-Mg-Sc alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(4): 61-69. DOI: 10.13264/j.cnki.ysjskx.2022.04.008 |
[6] | NIE Jincheng, YE Jieyun, WANG Zhigang, HE Xiaoxuan, CHEN Zihui. Casting process optimization of martensitic stainless steel baffle based on ProCAST numerical simulation[J]. Nonferrous Metals Science and Engineering, 2020, 11(6): 27-33. DOI: 10.13264/j.cnki.ysjskx.2020.06.004 |
[7] | CHEN Tao, LIU Zheng, CHEN Zhiping, ZHANG Jiayi. Effect of electromagnetic stirring way and rare earth on solidification structure of semi-solid A356 alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 76-82. DOI: 10.13264/j.cnki.ysjskx.2017.05.011 |
[8] | CHEN Fei, SONG Bo, YANG Zhanbing, LI Zhenxiang. Optimum simulation of velocity field and temperature field of horizontal passage of ISA waste heat boiler[J]. Nonferrous Metals Science and Engineering, 2016, 7(4): 1-8. DOI: 10.13264/j.cnki.ysjskx.2016.04.001 |
[9] | FENG Kai, ZHONG Jian-hua, TANG Zhi-li. The 3-D numerical simulation of heat transfer process for multi-start spiral pipe[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 95-98. DOI: 10.13264/j.cnki.ysjskx.2012.03.006 |
[10] | CUI Dong-liang, LI Xi-bing, ZHAO Guo-ya. Analysis of the Numerical Simulation to Structure Parameter of Hard-To-Mine Ore Body in Xincheng Gold Mine[J]. Nonferrous Metals Science and Engineering, 2006, 20(3): 13-17. |