Citation: | WANG Jihang, CAI Yusheng, JIANG Muchi, REN Dechun, JI Haibin, LEI Jiafeng, XIAO Xuan. Influence of artificial implant defects on properties of TC4 Titanium alloy fabricated by additive manufacturing[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 668-675. DOI: 10.13264/j.cnki.ysjskx.2023.05.009 |
[1] |
陈志强, 林银河, 蒲春雷, 等. 热处理对典型低合金钢棒材力学性能影响的机理[J]. 有色金属科学与工程, 2021, 12(4): 51-57.
|
[2] |
李岩, 张炯明, 尹延斌. IF钢连铸坯及热轧板夹杂物研究[J]. 有色金属科学与工程, 2020, 11(6): 18-26.
|
[3] |
曾光, 韩志宇, 梁书锦, 等. 金属零件3D打印技术的应用研究[J]. 中国材料进展, 2014, 33(6): 376-382.
|
[4] |
冯欣欣, 衣晓洋, 王海振, 等. Ti-V-Al轻质记忆合金的研究进展[J]. 有色金属科学与工程, 2021, 12(6): 72-79.
|
[5] |
邓同生, 李尚, 卢娇, 等. 稀土元素对钛合金蠕变性能影响规律综述[J]. 有色金属科学与工程, 2018, 9(6): 94-98.
|
[6] |
程晨, 雷旻, 万明攀, 等. BT25钛合金高温变形行为[J]. 有色金属科学与工程, 2017, 8(6): 51-56.
|
[7] |
吝媛, 杨奇, 黄拓, 等. Ti9148钛合金β-相晶粒长大行为[J]. 有色金属科学与工程, 2022, 13(2): 93-97.
|
[8] |
雷杨, 王沛, 邓亮, 等. 基于增材制造技术的非晶合金研究进展[J]. 稀有金属材料与工程, 2022, 51(4): 1497-1513.
|
[9] |
卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19-23.
|
[10] |
REN DC, LI SJ, WANG H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique[J]. Journal of Materials Science and Technology, 2019, 35(2): 285-294.
|
[11] |
任德春, 张慧博, 赵晓东, 等. 打印参数对电子束增材制造Ti-Ni合金性能的影响[J]. 金属学报, 2020, 56(8): 1103-1112.
|
[12] |
张立浩, 钱波, 张朝瑞, 等. 金属增材制造技术发展趋势综述[J]. 材料科学与工艺, 2022, 30(1): 42-52.
|
[13] |
李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向[J]. 工程科学学报, 2019, 41(2): 159-173.
|
[14] |
VILARO T, COLIN C, BARTOUT JD. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3190-3199.
|
[15] |
赵春玲, 李维, 王强, 等. 激光选区熔化成形钛合金内部缺陷及其演化规律研究[J]. 稀有金属材料与工程, 2021, 50(8): 2841-2849.
|
[16] |
GONG HJ, RAFI K, GU Hf, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Materials Design, 2015, 86: 545-554.
|
[17] |
MERTENS A, REGINSTER S, PAYDAS H, et al. Mechanical properties of alloy Ti-6Al-4V and ofstainless steel 316L processed by selective laser melting:influence of out-of-equilibrium microstructures[J]. Powder Metallurgy, 2014, 57(3): 184-189.
|
[18] |
EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598(26): 327-337.
|
[19] |
CARLTON HD, HABOUB A, GALLEGOS GF, et al. Damage evolution and failure mechanisms in additively manufactured stainless steel[J]. Materials Science and Engineering:A, 2016, 651(10): 406-414.
|
[20] |
KIM FH, MOYLAN SP, PHAN TQ, et al. Investigation of the effect of artificial internal defects on the tensile behavior of laser powder bed fusion 17-4 stainless steel samples: simultaneous tensile testing and X-ray computed Tomography[J]. Exp. Mech, 2020, 60: 987-1004.
|
[21] |
WILSON-HEID AE, NOVAK TC, BEESE AM, et al. Characterization of the effects of internal pores on tensile properties of additively manufactured austenitic stainless steel 316L[J]. Exp. Mech, 2019, 59(6): 793-804.
|
[22] |
FADIDA R, SHIRIZLY A, RITTEL D. Dynamic tensile response of additively manufactured Ti6Al4V with embedded spherical pores[J]. International Journal of Applied Mechanics, 2018, 85(4): 1-10.
|
[23] |
周燕, 段隆臣, 吴雪良, 等. 粉末粒径对激光选区熔化成形S136模具钢的磨损与抗腐蚀性能的影响[J].激光与光电子学进展, 2018, 55(10): 205-211.
|
[24] |
张霜银, 林鑫, 陈静, 等. 热处理对激光成形TC4合金组织及性能的影响[J]. 稀有金属材料与工程, 2007 (7): 1263-1266.
|
[25] |
MENG LX, BEN DD, YANG HJ, Effects of embedded spherical pore on the tensile properties of a selective laser melted Ti6Al4V alloy[J]. Materials Science and Engineering:A, 2021, 815: 141254.
|
[26] |
LEUDERS S, THONE M, RIEMER A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48: 300-307.
|
[27] |
SALLICA-LEVA E, CARAM R, JARDINI AL, et al. Ductility improvement due to martensite alpha’ decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54: 149-158.
|
[28] |
SLOTWINSKI JA, GARBOCZI EJ, HEBENSTREIT KM. Porosity measurements and analysis for metal additive manufacturing process control[J]. J RES NATL INST STAN, 2014, 119: 494-528.
|
[29] |
YUSUF S, CHEN Y, BOARDMAN R, et al. Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting[J]. Metals, 2017, 7(2): 64.
|
[30] |
THOMPSON A, MASKERY I, LEACH RK. X-ray computed tomography for additive manufacturing:a review[J]. Measurement Science and Technology, 2016, 27(7):072001.
|
[31] |
鲁媛媛, 马保飞, 刘源仁. 时效处理对TC4钛合金微观组织和力学性能的影响[J]. 金属热处理, 2019, 44(7): 34-38.
|
1. |
戎宇航,朱翔鹰,陈军修,吴长军,涂浩,王建华,苏旭平. Ti-Al-Fe-O熔体中氧化铝析出行为的研究. 有色金属科学与工程. 2024(01): 34-42 .
![]() |