Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Jihang, CAI Yusheng, JIANG Muchi, REN Dechun, JI Haibin, LEI Jiafeng, XIAO Xuan. Influence of artificial implant defects on properties of TC4 Titanium alloy fabricated by additive manufacturing[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 668-675. DOI: 10.13264/j.cnki.ysjskx.2023.05.009
Citation: WANG Jihang, CAI Yusheng, JIANG Muchi, REN Dechun, JI Haibin, LEI Jiafeng, XIAO Xuan. Influence of artificial implant defects on properties of TC4 Titanium alloy fabricated by additive manufacturing[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 668-675. DOI: 10.13264/j.cnki.ysjskx.2023.05.009

Influence of artificial implant defects on properties of TC4 Titanium alloy fabricated by additive manufacturing

More Information
  • Received Date: May 09, 2022
  • Revised Date: September 06, 2022
  • Available Online: November 07, 2023
  • TC4 titanium alloy samples with artificial implant defects were prepared by Selective Laser Melting (SLM) for one of the additive manufacturing technologies. The effects of the size and location of artificial implant defects on the tensile properties of the fabricated alloy at room temperature were studied, respectively. The results show that the actual size of the defects is slightly smaller than the designed size due to the alloy powder contained in the SLM fabrication process not being discharged but sintered on the hole defect surface after heat treatment. When the embedded defect diameter is less than 0.7 mm, the tensile strength of the alloy remains unchanged, and the samples all break from the non-embedded defect area. When the diameter of the embedded defect exceeds 0.7 mm, the tensile strength significantly decreases with the increase in defect size, and the samples all break from the embedded defect area. Alloy elongation is significantly affected by defects. With the increase in defect size, the overall elongation shows a trend of gradual decrease. When the defect size exceeds 0.7 mm, the elongation decreases sharply. When the defect size exceeds 0.9 mm, the elongation fluctuates in the range of 2%—4%. When the defect size is more than 0.7 mm, defect size is the dominant factor affecting the strength and elongation of addictive manufacturing alloy.
  • [1]
    陈志强, 林银河, 蒲春雷, 等. 热处理对典型低合金钢棒材力学性能影响的机理[J]. 有色金属科学与工程, 2021, 12(4): 51-57.
    [2]
    李岩, 张炯明, 尹延斌. IF钢连铸坯及热轧板夹杂物研究[J]. 有色金属科学与工程, 2020, 11(6): 18-26.
    [3]
    曾光, 韩志宇, 梁书锦, 等. 金属零件3D打印技术的应用研究[J]. 中国材料进展, 2014, 33(6): 376-382.
    [4]
    冯欣欣, 衣晓洋, 王海振, 等. Ti-V-Al轻质记忆合金的研究进展[J]. 有色金属科学与工程, 2021, 12(6): 72-79.
    [5]
    邓同生, 李尚, 卢娇, 等. 稀土元素对钛合金蠕变性能影响规律综述[J]. 有色金属科学与工程, 2018, 9(6): 94-98.
    [6]
    程晨, 雷旻, 万明攀, 等. BT25钛合金高温变形行为[J]. 有色金属科学与工程, 2017, 8(6): 51-56.
    [7]
    吝媛, 杨奇, 黄拓, 等. Ti9148钛合金β-相晶粒长大行为[J]. 有色金属科学与工程, 2022, 13(2): 93-97.
    [8]
    雷杨, 王沛, 邓亮, 等. 基于增材制造技术的非晶合金研究进展[J]. 稀有金属材料与工程, 2022, 51(4): 1497-1513.
    [9]
    卢秉恒. 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19-23.
    [10]
    REN DC, LI SJ, WANG H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique[J]. Journal of Materials Science and Technology, 2019, 35(2): 285-294.
    [11]
    任德春, 张慧博, 赵晓东, 等. 打印参数对电子束增材制造Ti-Ni合金性能的影响[J]. 金属学报, 2020, 56(8): 1103-1112.
    [12]
    张立浩, 钱波, 张朝瑞, 等. 金属增材制造技术发展趋势综述[J]. 材料科学与工艺, 2022, 30(1): 42-52.
    [13]
    李昂, 刘雪峰, 俞波, 等. 金属增材制造技术的关键因素及发展方向[J]. 工程科学学报, 2019, 41(2): 159-173.
    [14]
    VILARO T, COLIN C, BARTOUT JD. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42(10): 3190-3199.
    [15]
    赵春玲, 李维, 王强, 等. 激光选区熔化成形钛合金内部缺陷及其演化规律研究[J]. 稀有金属材料与工程, 2021, 50(8): 2841-2849.
    [16]
    GONG HJ, RAFI K, GU Hf, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Materials Design, 2015, 86: 545-554.
    [17]
    MERTENS A, REGINSTER S, PAYDAS H, et al. Mechanical properties of alloy Ti-6Al-4V and ofstainless steel 316L processed by selective laser melting:influence of out-of-equilibrium microstructures[J]. Powder Metallurgy, 2014, 57(3): 184-189.
    [18]
    EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598(26): 327-337.
    [19]
    CARLTON HD, HABOUB A, GALLEGOS GF, et al. Damage evolution and failure mechanisms in additively manufactured stainless steel[J]. Materials Science and Engineering:A, 2016, 651(10): 406-414.
    [20]
    KIM FH, MOYLAN SP, PHAN TQ, et al. Investigation of the effect of artificial internal defects on the tensile behavior of laser powder bed fusion 17-4 stainless steel samples: simultaneous tensile testing and X-ray computed Tomography[J]. Exp. Mech, 2020, 60: 987-1004.
    [21]
    WILSON-HEID AE, NOVAK TC, BEESE AM, et al. Characterization of the effects of internal pores on tensile properties of additively manufactured austenitic stainless steel 316L[J]. Exp. Mech, 2019, 59(6): 793-804.
    [22]
    FADIDA R, SHIRIZLY A, RITTEL D. Dynamic tensile response of additively manufactured Ti6Al4V with embedded spherical pores[J]. International Journal of Applied Mechanics, 2018, 85(4): 1-10.
    [23]
    周燕, 段隆臣, 吴雪良, 等. 粉末粒径对激光选区熔化成形S136模具钢的磨损与抗腐蚀性能的影响[J].激光与光电子学进展, 2018, 55(10): 205-211.
    [24]
    张霜银, 林鑫, 陈静, 等. 热处理对激光成形TC4合金组织及性能的影响[J]. 稀有金属材料与工程, 2007 (7): 1263-1266.
    [25]
    MENG LX, BEN DD, YANG HJ, Effects of embedded spherical pore on the tensile properties of a selective laser melted Ti6Al4V alloy[J]. Materials Science and Engineering:A, 2021, 815: 141254.
    [26]
    LEUDERS S, THONE M, RIEMER A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48: 300-307.
    [27]
    SALLICA-LEVA E, CARAM R, JARDINI AL, et al. Ductility improvement due to martensite alpha’ decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54: 149-158.
    [28]
    SLOTWINSKI JA, GARBOCZI EJ, HEBENSTREIT KM. Porosity measurements and analysis for metal additive manufacturing process control[J]. J RES NATL INST STAN, 2014, 119: 494-528.
    [29]
    YUSUF S, CHEN Y, BOARDMAN R, et al. Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting[J]. Metals, 2017, 7(2): 64.
    [30]
    THOMPSON A, MASKERY I, LEACH RK. X-ray computed tomography for additive manufacturing:a review[J]. Measurement Science and Technology, 2016, 27(7):072001.
    [31]
    鲁媛媛, 马保飞, 刘源仁. 时效处理对TC4钛合金微观组织和力学性能的影响[J]. 金属热处理, 2019, 44(7): 34-38.
  • Cited by

    Periodical cited type(1)

    1. 戎宇航,朱翔鹰,陈军修,吴长军,涂浩,王建华,苏旭平. Ti-Al-Fe-O熔体中氧化铝析出行为的研究. 有色金属科学与工程. 2024(01): 34-42 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (157) PDF downloads (14) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return