Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
ZHANG Jinfeng, CUI Yaru, HE Xihong, LI Linbo, ZHANG Feiyu, LYU Chaofei, ZHOU Yufei. Pre-removal and kinetic analysis of copper from anode slime by oxidation at atmospheric pressure[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 615-623. DOI: 10.13264/j.cnki.ysjskx.2023.05.003
Citation: ZHANG Jinfeng, CUI Yaru, HE Xihong, LI Linbo, ZHANG Feiyu, LYU Chaofei, ZHOU Yufei. Pre-removal and kinetic analysis of copper from anode slime by oxidation at atmospheric pressure[J]. Nonferrous Metals Science and Engineering, 2023, 14(5): 615-623. DOI: 10.13264/j.cnki.ysjskx.2023.05.003

Pre-removal and kinetic analysis of copper from anode slime by oxidation at atmospheric pressure

More Information
  • Received Date: October 19, 2022
  • Revised Date: November 20, 2022
  • Available Online: November 07, 2023
  • Copper anode slime, rich in precious metals (gold, silver, platinum and palladium) and rare metals (selenium and tellurium), is an important raw material for the extraction of rare precious metals. However, a certain anode slime contains more than 10% of Cu, and the excessive copper may increase the consumption of leaching agents in the subsequent precious metal recovery and thus seriously affect the recovery ratio of gold and silver, which needs to be removed in advance. Based on thermodynamic analysis, XRD, SEM-EDS and other characterization methods, pre-removal of copper from anode slime was carried out at normal pressure in a sulfuric acid medium with MnO2 as the oxidant. The effects of H2SO4 concentration, MnO2 addition, leaching time, liquid-solid ratio, reaction temperature and other factors on the copper leaching ratio of anode slime were investigated, respectively. Furthermore, the kinetics of the copper leaching process were analyzed according to shrinking unreacted core model. The results show that the reaction rate of copper leaching process is controlled by diffusion, with an apparent activation energy of 4.1 kJ/mol. Under the conditions of initial H2SO4 concentration of 100 g/L, MnO2 concentration of 10 g/L, leaching time of 120 min, liquid-solid ratio of 4:1, reaction temperature of 80 °C, the leaching ratio of Cu can reach 92.19%. Under the same conditions, part of arsenic and selenium are also leached, and the leaching ratios are maintained at about 28% and 13%, respectively.
  • [1]
    张宏斌, 杜武钊, 李林波, 等. 复杂金精矿“三连炉”火法捕金生产实践[J].有色金属(冶炼部分), 2022(2): 34-39.
    [2]
    郭学益, 王松松,王亲猛,等. 造锍捕金机理及富氧熔炼过程贵金属分配行为[J].中国有色金属学报, 2020, 30(12):2951-2962.
    [3]
    张俊峰, 王雷. 富氧侧吹处理含砷复杂金铜精矿的生产实践及技术优化[J].中国有色冶金, 2021, 50(4): 24-28, 35.
    [4]
    DONG Z L, JIANG T,XU B,et al. Comprehensive recoveries of selenium, copper,gold,silver and lead from a copper anode slime with a clean and economical hydrometallurgical process[J]. Chemical Engineering Journal, 2020, 393: 124762.
    [5]
    LIU S, ZHANG Y B, SU Z J, et al. Recycling the domestic copper scrap to address the China’s copper sustainability[J]. Journal of Materials Research and Technology,2020, 9(3):2846-2855.
    [6]
    XIAO L, WANG Y L, YU Y, et al.An environmentally friendly process to selectively recover silver from copper anode slime[J]. Journal of Cleaner Production, 2018, 187:708-716.
    [7]
    WANG S X, CUI W, ZHANG G W,et al.Ultra fast ultrasound-assisted decopperization from copper anode slime[J]. Ultrasonics Sonochemistry, 2017, 36: 20-26.
    [8]
    张栋. 铜阳极泥蒸硒过程中含硒物相变化的研究[D].昆明: 昆明理工大学.
    [9]
    刘勇. 杂铜阳极泥综合回收有价金属新工艺研究[D]. 昆明: 昆明理工大学.
    [10]
    刘永平, 雷刚. 从铜阳极泥中浸出铜、砷、碲试验研究[J].湿法冶金, 2021, 40(4): 298-301.
    [11]
    房孟钊. 从铜阳极泥中提取银的工艺研究现状[J].硫磷设计与粉体工程, 2021, 162(3): 4-9.
    [12]
    贺山明,王吉坤,徐志峰, 等. 铜阳极泥加压酸浸预处理脱铜富集贵金属(英文)[J].贵金属, 2014, 35(4): 48-53, 59.
    [13]
    徐小锋, 李冲, 崔沐, 等. 杂铜阳极泥回转窑氧化焙烧酸浸工艺研究[J].有色金属(冶炼部分), 2020(4): 22-25, 46.
    [14]
    刘伟锋. 碱性氧化法处理铜/铅阳极泥的研究[D].长沙: 中南大学.
    [15]
    刘伟锋, 杨天足, 刘又年, 等. 脱除铜阳极泥中贱金属的预处理工艺[J].中南大学学报(自然科学版), 2013, 44(4):1332-1337.
    [16]
    KHANLARIAN M,RASHCHI F,SABA M. A modified sulfation-roasting-leaching process for recovering Se,Cu, and Ag from copper anode slimes at a lower temperature[J]. Journal of Environmental Management, 2019, 235:303-309.
    [17]
    LU D K,CHANG Y F,YANG H Y,et al. Sequential removal of selenium and tellurium from copper anode slime with high nickel content[J].Transactions of Nonferrous Metals Society of China, 2015, 25(4):1307-1314.
    [18]
    詹有北, 王平, 路永锁, 等.杂铜阳极泥氧化焙烧-酸浸工艺试验研究[J].湖南有色金属, 2018, 34(2): 22-25.
    [19]
    张二军, 肖芬.采用加盐氧化焙烧—硫酸浸出工艺从铜阳极泥中回收铜和银[J].湿法冶金, 2021, 40(2): 106-109.
    [20]
    RAO S,LIU Y,WANG D X,et al. Pressure leaching of selenium and tellurium from scrap copper anode slimes in sulfuric acid-oxygen media[J]. Journal of Cleaner Production, 2021, 278: 123989.
    [21]
    LIU W F,YANG T Z, ZHANG D C, et al. Pretreatment of copper anode slime with alkaline pressure oxidative leaching[J]. International Journal of Mineral Processing,2014, 128: 48-54.
    [22]
    徐振鑫,廖春发,邹建柏.铜阳极泥复合酸浸砷锑铋工艺研究[J].稀有金属与硬质合金, 2021, 49(1): 30-34.
    [23]
    GAO F Y, TANG X L, YI H H, et al. In-situ DRIFTS for the mechanistic studies of NO oxidation over α-MnO2, β-MnO2 and γ-MnO2 catalysts[J]. Chemical Engineering Journal, 2017, 322: 525-537.
    [24]
    田国才,胡均贤,字富庭.氧化剂在黄铜矿氧化浸出中应用的研究进展[J]. 过程工程学报, 2017, 17(4): 664-676.
    [25]
    XIAO L, WANG Y L, YU Y, et al. Enhanced selective recovery of selenium from anode slime using MnO2 in dilute H2SO4 solution as oxidant[J]. Journal of Cleaner Production, 2019, 209: 495-504.
    [26]
    LUME-PEREIRA C, BARAL S, HENGLEIN A, et al. Chemistry of colloidal Manganese dioxide.1.Mechanism of reduction by an organic radical(a radiation chemical study)[J]. The Journal of Physical Chemistry A,1985, 89(26): 5772-5778.
    [27]
    KURNIAWAN K, LEE J C, KIM J, et al. Augmenting metal leaching from copper anode slime by sulfuric acid in the presence of Manganese(IV) oxide and graphite[J]. Hydrometallurgy, 2021, 205: 105745.
    [28]
    NAKAZAWA H, KOSHIYA S, KOBAYASHI H, et al.The effect of carbon black on the oxidative leaching of enargite by Manganese(IV) dioxide in sulfuric acid media[J].Hydrometallurgy, 2017, 171: 165-171.
    [29]
    YAOZHONG L. Laboratory study: simultaneous leaching silver-bearing low-grade Manganese ore and sphalerite concentrate[J]. Minerals Engineering, 2004, 17(9/10): 1053-1056.
    [30]
    TIAN X K,WEN X X,YANG C, et al. Reductive leaching of Manganese from low-grade Manganese dioxide ores using corncob as reductant in sulfuric acid solution[J]. Hydrometallurgy, 2010, 100(3/4): 157-160.
    [31]
    XUE J R, ZHONG H, WANG S,et al. Kinetics of reduction leaching of Manganese dioxide ore with Phytolacca Americana in sulfuric acid solution[J].Journal of Saudi Chemical Society, 2016, 20(4): 437-442.
    [32]
    黄诗汉, 吴浩, 郑江峰, 等.硝酸常压浸出红土镍矿特性及镍浸出动力学[J]. 矿冶, 2021, 30(5): 70-76.
    [33]
    刘健聪,熊道陵,张建平,等.钨冶炼渣中铁、锰浸出工艺研究[J]. 有色金属科学与工程, 2018, 9(4): 14-20.
    [34]
    LIU Z X,YIN Z L,HU H P,et al. Leaching kinetics of low-grade copper ore containing calcium-magnesium carbonate in ammonia-ammonium sulfate solution with persulfate[J].Transactions of Nonferrous Metals Society of China,2012,22(11): 2822-2830.
    [35]
    宁志强, 唐子瑞, 刘家辉, 等. 氯化铁溶液浸出低冰镍提取镍铜的研究[J]. 有色金属科学与工程, 2022,13(3):43-48.
  • Related Articles

    [1]FANG Qian, KANG Jiangang, TANG Wenwu, REN Cai, ZHANG Huibin. Synthesis of tungsten-modified δ-MnO2 and its application in air purification[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 338-346. DOI: 10.13264/j.cnki.ysjskx.2023.03.006
    [2]ZHANG Hao, WANG Guang, ZHANG Shihan, WANG Jingsong, XUE Qingguo. Direct reduction kinetics of copper slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 28-33. DOI: 10.13264/j.cnki.ysjskx.2019.01.005
    [3]SONG Hanlin, JIANG Pingguo, LIU Wenjie, WANG Zhengbing. Research progress on hydrogen reduction kinetics of tungsten oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 64-69. DOI: 10.13264/j.cnki.ysjskx.2017.05.009
    [4]TANG Weidong, ZHU Weiwei, JIANG Pingguo, JING Qingxiu. Kinetics of chlorination process of copper oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 46-50. DOI: 10.13264/j.cnki.ysjskx.2017.01.008
    [5]ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003
    [6]YAN Faming, AI Guanghua, WU Caibin, LI Xiaodong, SHI Zhizhong, MAO Wenming. On the grinding kinetics of tungsten ores[J]. Nonferrous Metals Science and Engineering, 2015, 6(4): 81-85, 120. DOI: 10.13264/j.cnki.ysjskx.2015.04.017
    [7]WU Keng, ZHANG Jiazhi, ZHAO Yong, ZHU Li, SHE Yuan. Research methods on the reaction kinetics of metallurgical reaction engineering[J]. Nonferrous Metals Science and Engineering, 2014, 5(4): 1-6. DOI: 10.13264/j.cnki.ysjskx.2014.04.001
    [8]ZHANG Hui-qing, ZHOU Kang-gen, WU Yun-dong. Removal of Cr6+and Mn2+from electrolytic manganese wastewater[J]. Nonferrous Metals Science and Engineering, 2014, 5(3): 9-15. DOI: 10.13264/j.cnki.ysjskx.2014.03.002
    [9]XIA Qing, YUE Tao. The research progress of flotation kinetics[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 46-51. DOI: 10.13264/j.cnki.ysjskx.2012.02.010
    [10]NIE Jin-xia, HEN Yun-ren, CHEN Ming CHEN Ming. Thermodynamics and Kinetics of Copper Sorption by Rice Bran[J]. Nonferrous Metals Science and Engineering, 2008, 22(4): 35-38.
  • Cited by

    Periodical cited type(1)

    1. 张佳桦,崔雅茹,王国华,王正民,桂海平,李邓,李安鑫. 从铁矾渣侧吹熔炼—烟化法烟灰中回收锌镉及其净化除杂. 湿法冶金. 2024(02): 121-128 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (126) PDF downloads (20) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return