Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
WANG Shuo, LIANG Jianming, GAO Xiaogang, ZHAO Fang, LI Shuangqing. MIG surfacing welding process of 304L stainless steel on T2 pure copper with addition of active flux[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 518-526. DOI: 10.13264/j.cnki.ysjskx.2023.04.010
Citation: WANG Shuo, LIANG Jianming, GAO Xiaogang, ZHAO Fang, LI Shuangqing. MIG surfacing welding process of 304L stainless steel on T2 pure copper with addition of active flux[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 518-526. DOI: 10.13264/j.cnki.ysjskx.2023.04.010

MIG surfacing welding process of 304L stainless steel on T2 pure copper with addition of active flux

More Information
  • Received Date: November 07, 2022
  • Revised Date: February 11, 2023
  • Available Online: August 23, 2023
  • In this paper, MIG welding was used to weld overlay 304L stainless steel on a T2 pure copper substrate. Based on analyzing the influence of welding current and preheating temperature on the formation of the surfacing layer, the active flux transition layer was further added. By analyzing the effect of the active flux on the surfacing layer and the copper-stainless steel interface, it can be found that the active flux can effectively increase the penetration depth and improve the bonding of the copper-stainless steel interface. It should be noted that Cr2O3 can not only produce arc shrinkage but also change the flow pattern of the molten pool, which is better than that of NaF. After the addition of Cr2O3 active flux, Cu-Fe in the copper-stainless steel bonding interface forms a miscible zone, a spherical Fe-rich phase on the copper side, and a granular Cu-rich phase on the stainless steel side. The diffusion of Cu-Fe can improve the bonding interface and avoid forming copper-infiltrated cracks. The optimized process is as follows: adding Cr2O3 active flux, the preheating temperature at 400 ℃, and welding current 320 A.
  • [1]
    席军, 马祥, 黄雅彬, 等. 铜钢复合冷却壁在包钢2号高炉的工业试验[J]. 炼铁, 2018, 37(6): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TIEN201806012.htm
    [2]
    刘奇, 程树森, 牛建平, 等. 铜钢复合冷却壁传热及热应力分析[J]. 中国有色金属学报, 2015, 25(2): 523-533. doi: 10.19476/j.ysxb.1004.0609.2015.02.032
    [3]
    刘奇, 程树森, 赵宏博, 等. 铜钢复合冷却壁热变形分析[J]. 工程科学学报, 2016, 38(1): 108-117. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201601015.htm
    [4]
    刘贻玲, 郑明贵. 中国铜产业链结构升级效果评价[J]. 有色金属科学与工程, 2022, 13(5): 120-126. doi: 10.13264/j.cnki.ysjskx.2022.05.015
    [5]
    闫丽峰. 铜钢复合冷却壁的特点及应用效果[J]. 炼铁, 2021, 40(5): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TIEN202105015.htm
    [6]
    王明磊. 复合冷却壁技术开发应用[J]. 冶金设备, 2010(增刊1): 102-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YJSB2010S1036.htm
    [7]
    陆隆文, 胡坚, 张海鸥, 等. 面向高炉风口小套长寿化的表面堆焊工艺[J]. 特种铸造及有色合金, 2016, 36(5): 469-473. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201605007.htm
    [8]
    SGRI S G, NAZARZADEH M, SHARIFITABAR M, et al. Gas tungsten arc welding of CP-copper to 304 stainless steel using different filler materials[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 2937-2942.
    [9]
    PRILUTSKY V P, AKHONIN S V. TIG welding of titanium alloys using fluxes[J]. Welding in the World Le Soudage Dans Le Monde, 2013, 58(2): 1-7.
    [10]
    PATEL N P, VORA J J, BADHEKA V J, et al. Review on the use of activated flux in arc and beam welding processes[J]. Materials Today: Proceedings, 2021, 43: 916-920.
    [11]
    KUO M, SUN Z, PAN D. Laser welding with activating flux[J]. Science & Technology of Welding & Joining, 2013, 6(1): 17-22.
    [12]
    KAUL R, GANESH P, SINGH N, et al. Effect of active flux addition on laser welding of austenitic stainless steel[J]. Science & Technology of Welding & Joining, 2013, 12(2): 127-137.
    [13]
    王小博, 杨立军, 石文玲, 等. 6061铝合金薄板低功率活性Nd: YAG激光焊的作用机理[J]. 机械工程学报, 2013, 49(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201304008.htm
    [14]
    KURTULMUS M. Activated flux TIG welding of austenitic stainless steels[J]. Emerging Materials Research, 2020, 9(4): 1041-1055.
    [15]
    HUANG Y, YUAN Y, FENG Y, et al. Effect of activating flux Cr2O3 on microstructure and properties of laser welded 5083 aluminum alloys[J]. Optics & Laser Technology, 2022, 150: 1-5.
    [16]
    ZHANG H, JIAO K X, ZHANG J L, et al. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding[J]. Materials & Design, 2018, 154: 140-152.
    [17]
    CHENG Z, HUANG J, Ye Z, et al. Microstructures and mechanical properties of copper-stainless steel butt-welded joints by MIG-TIG double-sided arc welding[J]. Journal of Materials Processing Technology, 2019, 265: 87-98.
    [18]
    ROY C, PAVANAN V V, VISHNU G, et al. Characterization of metallurgical and mechanical properties of commercially pure copper and AISI 304 dissimilar weldments[J]. Procedia Materials Science, 2014, 5: 2503-2512.
    [19]
    RAMACHANDRAN S, LAKSHMINARAYANAN A K. An insight into microstructural heterogeneities formation between weld subregions of laser welded copper to stainless steel joints [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(3): 727-745.
    [20]
    YAO C, XU B, ZHANG X, et al. Interface microstructure and mechanical properties of laser welding copper-steel dissimilar joint[J]. Optics & Lasers in Engineering, 2009, 47(7/8): 807-814.
    [21]
    SINGH G, SAXENA R K, SUNIL PANDEY. Investigating the effect of arc offsetting in AISI 304 stainless steel and copper welding using gas tungsten arc welding[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(3): 174.
  • Cited by

    Periodical cited type(1)

    1. 何若诗,刘鹏飞,张嘉诚,冯路路. Ni对水果辅助采摘设备用不锈钢组织及性能的影响. 南方金属. 2024(03): 42-45 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (92) PDF downloads (10) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return