Citation: | HE Jianing, JIA Yongxin, YU Shuai, SU Ruiming, NIE Sainan. Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004 |
[1] |
李念奎. 铝合金材料及其热处理技术[M]. 北京: 冶金工业出版社, 2012.
|
[2] |
张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(1): 39-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301006.htm
|
[3] |
李贝贝, 王元清, 支新航, 等. 我国7xxx系高强铝合金及其研究进展[J]. 建筑钢结构进展, 2021, 23(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ202107001.htm
|
[4] |
石峰, 张智超, 王旭. 7xxx系列铝合金时效处理工艺的研究[J]. 热加工工艺, 2017, 46(2): 6-10. doi: 10.14158/j.cnki.1001-3814.2017.02.002
|
[5] |
刘向丽. 双级时效对Al-Zn-Mg-Cu合金组织与性能的影响[J]. 热加工工艺, 2021, 50(8): 127-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202108032.htm
|
[6] |
王艳娟, 胡晓青, 曲庆文, 等. RRA处理对7085铝合金微观组织演变及性能的影响[J]. 金属热处理, 2019, 44(8): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201908012.htm
|
[7] |
王井井, 黄元春, 刘宇, 等. 时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J]. 有色金属科学与工程, 2018, 9(2): 47-55. doi: 10.13264/j.cnki.ysjskx.2018.02.009
|
[8] |
王胜玉, 肖柱, 王正安, 等. 工业化制备7050铝合金厚板显微组织与力学性能[J]. 有色金属科学与工程, 2017, 8(3): 48-53. doi: 10.13264/j.cnki.ysjskx.2017.03.008
|
[9] |
STALEY J T. Method and process of non-isothermal aging for aluminum alloys: US, 0267113Al[P]. 2007-11-22.
|
[10] |
向剑波, 陈伟, 熊落保, 等. 7055铝合金的非等温时效工艺[J]. 金属热处理, 2019, 44(1): 190-194. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201901050.htm
|
[11] |
陈庚, 苗景国, 方琴, 等. 非等温时效工艺对7050铝合金组织和性能的影响[J]. 金属热处理, 2020, 45(3): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202003039.htm
|
[12] |
PENG X Y, GUO Q, LIANG X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2017, 688: 146-154. doi: 10.1016/j.msea.2017.01.086
|
[13] |
李吉臣, 冯迪, 夏卫生, 等. 7055铝合金的非等温双级时效行为[J]. 金属学报, 2020, 56(11): 1495-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202011006.htm
|
[14] |
蒋爱娟, 祝贞凤, 梁晓宁, 等. 回归温度对7150铝合金组织和性能的影响[J]. 金属热处理, 2019, 44(9): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201909034.htm
|
[15] |
吴懿萍, 何臻毅, 周志纲, 等. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(增刊2): 394-397. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2019S2079.htm
|
[16] |
冯迪, 张新明, 邓运来, 等. 预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201405005.htm
|
[17] |
MARCEAU R K W, SHA G, LUMLEY R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Materialia, 2010, 58: 1795-1805.
|
[18] |
DU Z W, SUN Z M, SHAO B L, et al. Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal aging[J]. Materials Characterization, 2006, 56(2): 121-128.
|
[19] |
MARLAUD T, DESCHAMPS A, BLEY F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2010, 58(14): 4814-4826.
|
[20] |
余罡, 向剑波, 赵忠新, 等. 非等温时效对7003铝合金组织和性能的影响[J]. 金属热处理, 2020, 45(2): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202002031.htm
|
[21] |
张雪. 7050铝合金非等温时效过程组织演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
|
[22] |
冯迪, 张新明, 陈洪美, 等. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201801012.htm
|
[23] |
刘炎. 7000系铝合金的非等温时效行为及其对力学性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
[24] |
JIANG J T, TANG Q J, YANG L, et al. Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties[J]. Journal of Materials Processing Technology, 2016, 227: 110-116.
|
[25] |
唐秋菊. 7A85铝合金降温时效工艺的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
|
[26] |
詹鑫, 李慧中, 粱霄鹏, 等. 非等温时效对2A14铝合金晶间腐蚀和力学性能的影响[J]. 矿冶工程, 2018, 38(6): 139-142. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201806036.htm
|
[27] |
LI Y, XU G F, PENG X Y, et al. Effect of non-isothermal aging on microstructure and properties of Al-5.87Zn-2.07Mg-2.42Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2021(10): 1-10.
|
[28] |
MOGHANAKI S K, KAZEMINEZHAD M. Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed 2024 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 1-9.
|
[29] |
LIU Y, LIANG S, JIANG D. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2016, 689: 632-640.
|
[30] |
LIU Y, JIANG D, LI B, et al. Heating aging behavior of Al-8.35Zn-2.5Mg-2.25Cu alloy[J]. Materials and Design, 2014, 60(8): 116-124.
|
[31] |
LIU Y, JIANG D, LI B, et al. Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2014, 57(5): 79-86.
|
[32] |
冯迪, 张新明, 刘胜胆, 等. 预时效温度及回归加热速率对7150铝合金显微组织及性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305000.htm
|
[33] |
王国迎. 非等温回归及再时效对7055铝合金组织和性能的影响[D]. 镇江: 江苏科技大学, 2018.
|
[34] |
STARINK M J, LI X M. A model for the electrical conductivity of peak-aged and overaged Al-Zn-Mg-Cu alloys[J]. Metallurgical and Materials Transactions A, 2003, 34A(4): 899-911.
|
[35] |
范淑敏, 陈送义, 张星临, 等. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201906018.htm
|
[36] |
郭冉. 等温与非等温时效工艺对Al-Zn-Mg合金螺旋面挤压型材组织性能的影响规律研究[D]. 济南: 山东大学, 2020.
|
[37] |
JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2014, 605: 167-175.
|
[38] |
李吉臣, 冯迪, 夏卫生, 等. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202009008.htm
|
[39] |
JIANG D M, LIU Y, LIANG S, et al. The effects of non-isothermal aging on the strength and corrosion behavior of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2016, 681: 57-65.
|
[40] |
XU D K, BIRBILIS N, ROMETSCH P A, et al. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150[J]. Corrosion Science, 2012, 54: 17-25.
|
[41] |
李劲风, 陈永来, 张绪虎, 等. 非等温时效对一种铝锂合金力学性能与微观组织的影响[J]. 稀有金属材料与工程, 2017, 46(1): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201701031.htm
|
[42] |
吴国华, 孙江伟, 张亮, 等. 铝锂合金材料研究应用现状与展望[J]. 有色金属科学与工程, 2019, 10(2): 31-46. doi: 10.13264/j.cnki.ysjskx.2019.02.006
|
[43] |
YANG W, JI S, HUANG L, et al. Initial precipitation and hardening mechanism during non-isothermal aging in an Al-Mg-Si-Cu 6005A alloy[J]. Materials Characterization, 2014, 94(8): 170-177.
|
[44] |
YAZDANMEHR M, BAHRAMI A, ANIJDAN S H M. A precipitation-hardening model for non-isothermal ageing of Al-Mg-Si alloys[J]. Computational Materials Science, 2009, 45(2): 385-387.
|