Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
HE Jianing, JIA Yongxin, YU Shuai, SU Ruiming, NIE Sainan. Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004
Citation: HE Jianing, JIA Yongxin, YU Shuai, SU Ruiming, NIE Sainan. Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 23-28. DOI: 10.13264/j.cnki.ysjskx.2022.05.004

Research progress in non-isothermal aging process of aluminum alloys with high strength and toughness

More Information
  • Received Date: November 13, 2021
  • Revised Date: December 25, 2021
  • Available Online: November 07, 2022
  • As a new aging treatment method, the nonisothermal aging process can effectively improve the comprehensive properties of aluminum alloys with high strength and toughness. The cases of nonisothermal aging process applied to aluminum alloys with high strength and toughness in recent years were briefly studied to summarize the characteristics of precipitates and the changes in mechanical properties and corrosion properties of aluminum alloy with high strength and toughness after different nonisothermal aging treatments. It is found that compared with the traditional aging process the efficiency of the nonisothermal aging process has been greatly improved. In addition, moreover, the types, sizes and distributions of matrix precipitates and grain boundary precipitates of aluminum alloy with high strength and toughness can be simultaneously controlled by a nonisothermal aging process so that aluminum alloy with high strength and toughness has mechanical properties similar to the T6 peak aging state and corrosion properties close to the T7x overaging state. Finally, future research and applications of nonisothermal aging processes for aluminum alloys with high strength and toughness are proposed.
  • [1]
    李念奎. 铝合金材料及其热处理技术[M]. 北京: 冶金工业出版社, 2012.
    [2]
    张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(1): 39-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201301006.htm
    [3]
    李贝贝, 王元清, 支新航, 等. 我国7xxx系高强铝合金及其研究进展[J]. 建筑钢结构进展, 2021, 23(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJZ202107001.htm
    [4]
    石峰, 张智超, 王旭. 7xxx系列铝合金时效处理工艺的研究[J]. 热加工工艺, 2017, 46(2): 6-10. doi: 10.14158/j.cnki.1001-3814.2017.02.002
    [5]
    刘向丽. 双级时效对Al-Zn-Mg-Cu合金组织与性能的影响[J]. 热加工工艺, 2021, 50(8): 127-129. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202108032.htm
    [6]
    王艳娟, 胡晓青, 曲庆文, 等. RRA处理对7085铝合金微观组织演变及性能的影响[J]. 金属热处理, 2019, 44(8): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201908012.htm
    [7]
    王井井, 黄元春, 刘宇, 等. 时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金组织与耐腐蚀性影响[J]. 有色金属科学与工程, 2018, 9(2): 47-55. doi: 10.13264/j.cnki.ysjskx.2018.02.009
    [8]
    王胜玉, 肖柱, 王正安, 等. 工业化制备7050铝合金厚板显微组织与力学性能[J]. 有色金属科学与工程, 2017, 8(3): 48-53. doi: 10.13264/j.cnki.ysjskx.2017.03.008
    [9]
    STALEY J T. Method and process of non-isothermal aging for aluminum alloys: US, 0267113Al[P]. 2007-11-22.
    [10]
    向剑波, 陈伟, 熊落保, 等. 7055铝合金的非等温时效工艺[J]. 金属热处理, 2019, 44(1): 190-194. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201901050.htm
    [11]
    陈庚, 苗景国, 方琴, 等. 非等温时效工艺对7050铝合金组织和性能的影响[J]. 金属热处理, 2020, 45(3): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202003039.htm
    [12]
    PENG X Y, GUO Q, LIANG X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2017, 688: 146-154. doi: 10.1016/j.msea.2017.01.086
    [13]
    李吉臣, 冯迪, 夏卫生, 等. 7055铝合金的非等温双级时效行为[J]. 金属学报, 2020, 56(11): 1495-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202011006.htm
    [14]
    蒋爱娟, 祝贞凤, 梁晓宁, 等. 回归温度对7150铝合金组织和性能的影响[J]. 金属热处理, 2019, 44(9): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201909034.htm
    [15]
    吴懿萍, 何臻毅, 周志纲, 等. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(增刊2): 394-397. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2019S2079.htm
    [16]
    冯迪, 张新明, 邓运来, 等. 预时效温度及回归加热速率对7055铝合金组织及性能的影响[J]. 中国有色金属学报, 2014, 24(5): 1141-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201405005.htm
    [17]
    MARCEAU R K W, SHA G, LUMLEY R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Materialia, 2010, 58: 1795-1805.
    [18]
    DU Z W, SUN Z M, SHAO B L, et al. Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal aging[J]. Materials Characterization, 2006, 56(2): 121-128.
    [19]
    MARLAUD T, DESCHAMPS A, BLEY F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2010, 58(14): 4814-4826.
    [20]
    余罡, 向剑波, 赵忠新, 等. 非等温时效对7003铝合金组织和性能的影响[J]. 金属热处理, 2020, 45(2): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC202002031.htm
    [21]
    张雪. 7050铝合金非等温时效过程组织演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
    [22]
    冯迪, 张新明, 陈洪美, 等. 非等温回归再时效对Al-8Zn-2Mg-2Cu合金厚板组织及性能的影响[J]. 金属学报, 2018, 54(1): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201801012.htm
    [23]
    刘炎. 7000系铝合金的非等温时效行为及其对力学性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [24]
    JIANG J T, TANG Q J, YANG L, et al. Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties[J]. Journal of Materials Processing Technology, 2016, 227: 110-116.
    [25]
    唐秋菊. 7A85铝合金降温时效工艺的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [26]
    詹鑫, 李慧中, 粱霄鹏, 等. 非等温时效对2A14铝合金晶间腐蚀和力学性能的影响[J]. 矿冶工程, 2018, 38(6): 139-142. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201806036.htm
    [27]
    LI Y, XU G F, PENG X Y, et al. Effect of non-isothermal aging on microstructure and properties of Al-5.87Zn-2.07Mg-2.42Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2021(10): 1-10.
    [28]
    MOGHANAKI S K, KAZEMINEZHAD M. Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed 2024 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 1-9.
    [29]
    LIU Y, LIANG S, JIANG D. Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2016, 689: 632-640.
    [30]
    LIU Y, JIANG D, LI B, et al. Heating aging behavior of Al-8.35Zn-2.5Mg-2.25Cu alloy[J]. Materials and Design, 2014, 60(8): 116-124.
    [31]
    LIU Y, JIANG D, LI B, et al. Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2014, 57(5): 79-86.
    [32]
    冯迪, 张新明, 刘胜胆, 等. 预时效温度及回归加热速率对7150铝合金显微组织及性能的影响[J]. 中国有色金属学报, 2013, 23(5): 1173-1181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305000.htm
    [33]
    王国迎. 非等温回归及再时效对7055铝合金组织和性能的影响[D]. 镇江: 江苏科技大学, 2018.
    [34]
    STARINK M J, LI X M. A model for the electrical conductivity of peak-aged and overaged Al-Zn-Mg-Cu alloys[J]. Metallurgical and Materials Transactions A, 2003, 34A(4): 899-911.
    [35]
    范淑敏, 陈送义, 张星临, 等. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201906018.htm
    [36]
    郭冉. 等温与非等温时效工艺对Al-Zn-Mg合金螺旋面挤压型材组织性能的影响规律研究[D]. 济南: 山东大学, 2020.
    [37]
    JIANG J T, XIAO W Q, YANG L, et al. Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2014, 605: 167-175.
    [38]
    李吉臣, 冯迪, 夏卫生, 等. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202009008.htm
    [39]
    JIANG D M, LIU Y, LIANG S, et al. The effects of non-isothermal aging on the strength and corrosion behavior of Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2016, 681: 57-65.
    [40]
    XU D K, BIRBILIS N, ROMETSCH P A, et al. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150[J]. Corrosion Science, 2012, 54: 17-25.
    [41]
    李劲风, 陈永来, 张绪虎, 等. 非等温时效对一种铝锂合金力学性能与微观组织的影响[J]. 稀有金属材料与工程, 2017, 46(1): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201701031.htm
    [42]
    吴国华, 孙江伟, 张亮, 等. 铝锂合金材料研究应用现状与展望[J]. 有色金属科学与工程, 2019, 10(2): 31-46. doi: 10.13264/j.cnki.ysjskx.2019.02.006
    [43]
    YANG W, JI S, HUANG L, et al. Initial precipitation and hardening mechanism during non-isothermal aging in an Al-Mg-Si-Cu 6005A alloy[J]. Materials Characterization, 2014, 94(8): 170-177.
    [44]
    YAZDANMEHR M, BAHRAMI A, ANIJDAN S H M. A precipitation-hardening model for non-isothermal ageing of Al-Mg-Si alloys[J]. Computational Materials Science, 2009, 45(2): 385-387.

Catalog

    Article Metrics

    Article views (199) PDF downloads (23) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return