Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014
Citation: QUAN Yongqi, CHENG Hanming, WANG Herui, ZHAO Yao, LIN Gaoyong. Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(2): 98-106. DOI: 10.13264/j.cnki.ysjskx.2022.02.014

Effects of heat treatment on the microstructure and mechanical properties of die casting AlSi10MnMg alloy

More Information
  • Received Date: July 21, 2021
  • Revised Date: September 12, 2021
  • Available Online: May 09, 2022
  • When nonvacuum die-casting AlSi10MnMg alloy samples developed by a domestic company were taken as the experimental objects, the effects of heat treatment on the microstructure and mechanical properties of the alloy were investigated. The results showed that the comprehensive performance of nonvacuum die castings decreased after high temperature solution-quenching-artificial aging treatment, and distortion and blistering were prone to occur in the castings. When the die-casting specimens were treated by low-temperature aging only, their yield strength and tensile strength reached 251.8 MPa and 327.1 MPa, respectively, which were 42.6% and 10.5% higher than those of the die-cast specimens, and the elongation after fracture decreased. The main strengthening phases that precipitated in the alloy after low-temperature aging treatments were the Mn6Si and Mg2Si phases.
  • [1]
    陈超. 高强韧压铸Al-Si(Mg)合金组织与性能研究[D]. 上海: 上海交通大学, 2018.
    [2]
    魏娟娟, 米国发, 许磊, 等. 激光增材制造铝合金及其复合材料研究进展[J]. 热加工工艺, 2019, 48(8): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201908008.htm
    [3]
    李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5): 47-61. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG202005006.htm
    [4]
    DASH S S, LI D J, ZENG X Q, et al. Heterogeneous microstructure and deformation behavior of an automotive grade aluminum alloy[J]. Journal of Alloys and Compounds, 2021, 870(5): 1-12.
    [5]
    徐俊杰. 真空压铸Al-Si-Mg-Mn合金的组织控制与力学性能研究[D]. 南京: 东南大学, 2018.
    [6]
    赵旭, 王平, 孙晶莹, 等. 压铸AlSi10MnMg铝合金中铸态缺陷分析[J]. 特种铸造及有色合金, 2019, 39(12): 1291-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201912004.htm
    [7]
    万里, 刘学强, 胡祖麒, 等. 高真空压铸AlSi10MnMgFe合金的组织和力学性能[J]. 特种铸造及有色合金, 2014, 34(5): 499-503. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201405015.htm
    [8]
    黄正华, 张银帅, 宋东福, 等. 压铸铝合金的应用及研究进展[J]. 材料研究与应用, 2017, 11(1): 1-5. doi: 10.3969/j.issn.1673-9981.2017.01.001
    [9]
    丁凤娟, 贾向东, 洪腾蛟, 等. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202108019.htm
    [10]
    胡祖麒, 万里, 吴晗, 等. 时效处理对高强韧压铸Al-Mg-Si-Mn合金力学性能的影响[J]. 铸造, 2013, 62(1): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ201301008.htm
    [11]
    李润霞, 孙继鸿, 郝建飞, 等. 变质处理及挤压铸造对过共晶Al-Si-Cu-Mg合金组织与性能的影响[J]. 铸造, 2017, 66(12): 1273-1278. doi: 10.3969/j.issn.1001-4977.2017.12.006
    [12]
    刘冲冲, 潘秋红, 董则防, 等. Al-8Si铸轧合金组织及其热处理工艺研究[J]. 热加工工艺, 2021, 50(2): 121-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY202102030.htm
    [13]
    江媛媛. 压铸Al-10Si-0.3Mg合金的组织和力学性能研究[D]. 重庆: 重庆大学, 2016.
    [14]
    蔡聪德. 高强韧压铸Al-Si-Cu合金的组织性能及其热处理研究[D]. 重庆: 重庆大学, 2017.
    [15]
    李四娣, 安肇勇, 黄明军, 等. 高真空压铸汽车底盘结构件的热处理[J]. 特种铸造及有色合金, 2017, 37(9): 975-978. https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201709012.htm
    [16]
    王慧芳, 龙思远, 吴星宇, 等. 铁、镁含量及热处理对压铸铝硅合金组织和拉伸性能的影响[J]. 机械工程材料, 2016, 40(2): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201602006.htm
    [17]
    胡祖麒, 万里, 吴晗, 等. 高强韧压铸Al-Mg-Si-Mn合金的微观组织及力学性能[J]. 中国有色金属学报, 2013, 23(3): 616-622. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201303003.htm
    [18]
    欧翅翔, 汪樟锋, 刘锋睿, 等. A356铝合金轮毂Si偏析现象及力学性能[J]. 有色金属科学与工程, 2020, 11(1): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202001010.htm
    [19]
    贲能军, 孙瑜, 周鹏飞. Mg含量对AlSiMg合金组织演变及性能的影响[J]. 铸造, 2020, 69(9): 929-933. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ202009004.htm
    [20]
    罗海云, 邝泉波, 王日初. 轻质Al-Mg-Li合金的微观组织与力学性能[J]. 有色金属科学与工程, 2019, 10(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201904011.htm
    [21]
    刘学强. 压铸AlSi10MgMn合金的组织和力学性能研究[D]. 武汉: 华中科技大学, 2013.
    [22]
    贾从波. 热处理对真空压铸铝合金发动机缸体组织和性能的影响研究[D]. 重庆: 重庆大学, 2016.
  • Related Articles

    [1]ZHENG Ya, LIU Juan, YU Qiang, MU Yichen, ZHAO Xiaoyu, LI Xiaocheng. Preparation of micro-nano hierarchical Si/C composites by CO2 oxidation of porous Mg2Si and lithium storage properties[J]. Nonferrous Metals Science and Engineering, 2024, 15(2): 256-264. DOI: 10.13264/j.cnki.ysjskx.2024.02.012
    [2]LI Liqing, ZHOU Run, LONG Huiting, KONG Huimin, ZOU Laixi, LUO Xianping, SHAO Yunan, YANG Guofei. Surface modification mechanism of magnesium hydroxide (101) based on density functional theory[J]. Nonferrous Metals Science and Engineering, 2023, 14(4): 447-453. DOI: 10.13264/j.cnki.ysjskx.2023.04.001
    [3]LIU Xiaoxian, ZHENG Ya, LIU Juan, YU Qiang, LI Xiaocheng, HAN Feng, WANG Jianqiu. Partial carbonization strategy to prepare Si@C composite and its lithium storage performance[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 50-57. DOI: 10.13264/j.cnki.ysjskx.2022.06.007
    [4]WEN Shijie, CHEN Feiyu. Determination of 14 rare earth lmpurities in Lanthanum-iron alloy by inductively coupled plasma optical emission spectrometry[J]. Nonferrous Metals Science and Engineering, 2021, 12(6): 123-130. DOI: 10.13264/j.cnki.ysjskx.2021.06.016
    [5]ZHANG Hepeng, SUN Sicong, MEI Longbao, LIANG Liang. Preparation of super-high purity niobium oxide by adjusting valence state extraction and ceramic membrane filtration combined with antimony removal[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 71-75. DOI: 10.13264/j.cnki.ysjskx.2020.02.010
    [6]HE Jiangfan, WU Peijia, GUANG Weixin, LI Xin, SHU Qing. Synthesis and selectivity of anode material La0.75Sr0.25Cr0.5Mn0.5O3-δ for solid oxide fuel cell[J]. Nonferrous Metals Science and Engineering, 2018, 9(5): 33-36, 48. DOI: 10.13264/j.cnki.ysjskx.2018.05.006
    [7]ZHANG Wenjuan, XIE Lingjun, LIU Hong. Determination of low content total rare earth in bastnaesite by ICP-AES[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 141-146. DOI: 10.13264/j.cnki.ysjskx.2016.06.0024
    [8]WEN Shijie, ZHOU Junhai, ZHANG Shaofu. Determination of Al, Si, Ca, Mg, Mn in yttrium-iron alloy by inductively Coupled plasma atomic emission spectrometry[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 134-136. DOI: 10.13264/j.cnki.ysjskx.2016.01.024
    [9]XU Fang. Determination of Mn in Aluminum Bronze by ICP-AES[J]. Nonferrous Metals Science and Engineering, 2011, 2(3): 80-82.
    [10]CAI Xu. On the Application of Slon High-gradient Magnetic Separator in Cobalt Oxide Mine[J]. Nonferrous Metals Science and Engineering, 2009, 23(2): 16-17,22.

Catalog

    Article Metrics

    Article views (229) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return