Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
LI Lyuda, HONG Xin, MAN Xucun, CHEN Qiao, ZHANG Jianbo, LIU Jinping. High temperature deformation behavior and hot processing map of Cu-Ni-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 44-51. DOI: 10.13264/j.cnki.ysjskx.2022.01.006
Citation: LI Lyuda, HONG Xin, MAN Xucun, CHEN Qiao, ZHANG Jianbo, LIU Jinping. High temperature deformation behavior and hot processing map of Cu-Ni-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 44-51. DOI: 10.13264/j.cnki.ysjskx.2022.01.006

High temperature deformation behavior and hot processing map of Cu-Ni-Ti alloy

More Information
  • Received Date: July 25, 2021
  • Revised Date: July 25, 2021
  • Available Online: April 13, 2022
  • The Cu-Ni-Ti alloy was subjected to isothermal compression tests at temperatures ranging from 700 to 850 ℃ with deformation rates ranging from 0.01 to 10 s-1 using MMS-100 thermal simulator. The results showed that with the increase of strain, the flow stress rapidly rose to the limit value and then gradually turned into an easy curve. The flow stress decreased with the increase of temperature and increased with the increase of strain rate. Based on the relationship between stress, deformation rate and strain temperature, the constitutive equation and hot processing map of Cu-Ni-Ti alloy were constructed. The optimal processing conditions of Cu-Ni-Ti alloys were in the range of temperature 840~850 ℃ and strain rate 0.1~1 s-1. Under the optimal process conditions, the microstructure was an equiaxed crystal with dynamic recovery and recrystallization grain, and slender fibrous structure could be mostly found in the instability zone.
  • [1]
    ZHAO Z, ZHANG Y, TIAN B, et al. Co effects on Cu-Ni-Si alloys microstructure and physical properties[J]. Journal of Alloys and Compounds, 2019, 797: 1327-1337. doi: 10.1016/j.jallcom.2019.05.135
    [2]
    LEI Q, LI Z, WANG M P, et al. The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging[J]. Materials Science and Engineering: A, 2010, 527: 24-25.
    [3]
    XIA C, JIA Y, WAN Z, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments[J]. Materials & Design, 2012, 39: 404-409.
    [4]
    PANG Y, XIA C, WANG M, et al. Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu-Cr alloy[J]. Journal of Alloys & Compounds, 2014, 582: 786-792.
    [5]
    冯颖, 李益民, 曾昭易, 等. 注射成形和模压成形Cu-10Ni合金的烧结行为[J]. 粉末冶金材料科学与工程, 2009, 14(1): 42-47. doi: 10.3969/j.issn.1673-0224.2009.01.009
    [6]
    马艳霞, 苑伟, 梁晨, 等. CuNi10Fe1.6Mn铜镍合金热压缩流变应力行为研究[J]. 锻压装备与制造技术, 2018, 53(6): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJX201806047.htm
    [7]
    ZHANG H, HE Y, YANG F, et al. Thermodynamic assessment of Cu-Ni-Ti ternary system assisted with key measurements[J]. Thermochimica Acta, 2013, 574: 121-132. doi: 10.1016/j.tca.2013.08.012
    [8]
    ZHU W J, DUARTE L I, LEINENBACH C. Experimental study and thermodynamic assessment of the Cu-Ni-Ti system[J]. Calphad, 2014, 47: 9-22. doi: 10.1016/j.calphad.2014.06.002
    [9]
    ZHANG P, LI Y, LEI Q, et al. Microstructure and mechanical properties of a Cu-Ni-Ti alloy with a large product of strength and elongation[J]. Journal of Materials Research and Technology, 2020, 9(2): 2299-2307. doi: 10.1016/j.jmrt.2019.12.061
    [10]
    LIU J, WANG X H, GUO T T, et al. Microstructure and properties of Cu-Ti-Ni alloys[J]. International Journal of Minerals Metallurgy and Materials, 2015, 11: 1199-1204.
    [11]
    LIU J, WANG X H, GUO T T, et al. Microstructural evolution and properties of aged Cu-3Ti-3Ni alloy[J]. Rare Metal Materials & Engineering, 2016, 45(5): 1162-1167.
    [12]
    CHALON J, GUÉRIN J D, DUBAR L, et al. Characterization of the hot-working behavior of a Cu-Ni-Si alloy[J]. Materials Science & Engineering A, 2016, 667: 77-86.
    [13]
    LIU J, WANG X H, LIU J T, et al. Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5Si alloy[J]. Journal of Alloys & Compounds, 2019, 782: 224-234.
    [14]
    LEI Q, LI Z, WANG J, et al. Hot working behavior of a super high strength Cu-Ni-Si alloy[J]. Materials and Design, 2013, 51: 1104-1109. doi: 10.1016/j.matdes.2013.05.001
    [15]
    吴文博, 崔书辉, 郑学清, 等. 某发动机用Cu-Ni-Si生产工艺的确定[J]. 有色金属科学与工程, 2020, 11(2): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202002011.htm
    [16]
    周家林, 史密, 张陪毅, 等. 45钢低温区热变形行为研究[J]. 钢铁, 2014, 49(10): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201410012.htm
    [17]
    王桂花, 杨秋月, 吴珊珊, 等. GH2132高温合金热变形行为研究[J]. 塑性工程学报, 2021, 28(3): 137-145. doi: 10.3969/j.issn.1007-2012.2021.03.018
    [18]
    权国政, 王阳, 余春堂, 等. 基于DMM加工图的7050铝合金热塑性变形参数优化识别[J]. 材料热处理学报, 2013, (6): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201306034.htm
    [19]
    蔡薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201908032.htm
    [20]
    LIANG Q, LIU X, LI P, et al. Hot deformation behavior and processing map of high-strength nickel brass[J]. Metals, 2020, 10(6): 782. doi: 10.3390/met10060782
    [21]
    孙军伟, 张荣伟, 李升燕, 等. 5812铝合金热变形行为研究[J]. 有色金属科学与工程, 2018, 9(5): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201805008.htm
    [22]
    SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14: 1136-1138. doi: 10.1016/0001-6160(66)90207-0
    [23]
    LIN Y C, CHEN M S, ZHONG J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Computational Materials Science, 2008, 42: 470-477. doi: 10.1016/j.commatsci.2007.08.011
    [24]
    PRASAD Y V R K, RAO K P. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability[J]. Materials Science and Engineering: A, 2008, 487: 316-327. doi: 10.1016/j.msea.2007.10.038
    [25]
    PRASAD Y V R K, SESHACHARYULU T. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering: A, 1998, 243: 82-88. doi: 10.1016/S0921-5093(97)00782-X
    [26]
    MURTY S, RAO B N. On the flow localization concepts in the processing maps of titanium alloy Ti-24Al-20Nb[J]. Journal of Materials Processing Technology, 2000, 104(1/2): 103-109.

Catalog

    Article Metrics

    Article views (198) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return