Citation: | LI Lyuda, HONG Xin, MAN Xucun, CHEN Qiao, ZHANG Jianbo, LIU Jinping. High temperature deformation behavior and hot processing map of Cu-Ni-Ti alloy[J]. Nonferrous Metals Science and Engineering, 2022, 13(1): 44-51. DOI: 10.13264/j.cnki.ysjskx.2022.01.006 |
[1] |
ZHAO Z, ZHANG Y, TIAN B, et al. Co effects on Cu-Ni-Si alloys microstructure and physical properties[J]. Journal of Alloys and Compounds, 2019, 797: 1327-1337. doi: 10.1016/j.jallcom.2019.05.135
|
[2] |
LEI Q, LI Z, WANG M P, et al. The evolution of microstructure in Cu-8.0Ni-1.8Si-0.15Mg alloy during aging[J]. Materials Science and Engineering: A, 2010, 527: 24-25.
|
[3] |
XIA C, JIA Y, WAN Z, et al. Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments[J]. Materials & Design, 2012, 39: 404-409.
|
[4] |
PANG Y, XIA C, WANG M, et al. Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu-Cr alloy[J]. Journal of Alloys & Compounds, 2014, 582: 786-792.
|
[5] |
冯颖, 李益民, 曾昭易, 等. 注射成形和模压成形Cu-10Ni合金的烧结行为[J]. 粉末冶金材料科学与工程, 2009, 14(1): 42-47. doi: 10.3969/j.issn.1673-0224.2009.01.009
|
[6] |
马艳霞, 苑伟, 梁晨, 等. CuNi10Fe1.6Mn铜镍合金热压缩流变应力行为研究[J]. 锻压装备与制造技术, 2018, 53(6): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJX201806047.htm
|
[7] |
ZHANG H, HE Y, YANG F, et al. Thermodynamic assessment of Cu-Ni-Ti ternary system assisted with key measurements[J]. Thermochimica Acta, 2013, 574: 121-132. doi: 10.1016/j.tca.2013.08.012
|
[8] |
ZHU W J, DUARTE L I, LEINENBACH C. Experimental study and thermodynamic assessment of the Cu-Ni-Ti system[J]. Calphad, 2014, 47: 9-22. doi: 10.1016/j.calphad.2014.06.002
|
[9] |
ZHANG P, LI Y, LEI Q, et al. Microstructure and mechanical properties of a Cu-Ni-Ti alloy with a large product of strength and elongation[J]. Journal of Materials Research and Technology, 2020, 9(2): 2299-2307. doi: 10.1016/j.jmrt.2019.12.061
|
[10] |
LIU J, WANG X H, GUO T T, et al. Microstructure and properties of Cu-Ti-Ni alloys[J]. International Journal of Minerals Metallurgy and Materials, 2015, 11: 1199-1204.
|
[11] |
LIU J, WANG X H, GUO T T, et al. Microstructural evolution and properties of aged Cu-3Ti-3Ni alloy[J]. Rare Metal Materials & Engineering, 2016, 45(5): 1162-1167.
|
[12] |
CHALON J, GUÉRIN J D, DUBAR L, et al. Characterization of the hot-working behavior of a Cu-Ni-Si alloy[J]. Materials Science & Engineering A, 2016, 667: 77-86.
|
[13] |
LIU J, WANG X H, LIU J T, et al. Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5Si alloy[J]. Journal of Alloys & Compounds, 2019, 782: 224-234.
|
[14] |
LEI Q, LI Z, WANG J, et al. Hot working behavior of a super high strength Cu-Ni-Si alloy[J]. Materials and Design, 2013, 51: 1104-1109. doi: 10.1016/j.matdes.2013.05.001
|
[15] |
吴文博, 崔书辉, 郑学清, 等. 某发动机用Cu-Ni-Si生产工艺的确定[J]. 有色金属科学与工程, 2020, 11(2): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS202002011.htm
|
[16] |
周家林, 史密, 张陪毅, 等. 45钢低温区热变形行为研究[J]. 钢铁, 2014, 49(10): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201410012.htm
|
[17] |
王桂花, 杨秋月, 吴珊珊, 等. GH2132高温合金热变形行为研究[J]. 塑性工程学报, 2021, 28(3): 137-145. doi: 10.3969/j.issn.1007-2012.2021.03.018
|
[18] |
权国政, 王阳, 余春堂, 等. 基于DMM加工图的7050铝合金热塑性变形参数优化识别[J]. 材料热处理学报, 2013, (6): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201306034.htm
|
[19] |
蔡薇, 高鹏哲, 陈辉明, 等. Cu-Cr-Zr-Ti合金高温热变形行为及热加工图[J]. 金属热处理, 2019, 44(8): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201908032.htm
|
[20] |
LIANG Q, LIU X, LI P, et al. Hot deformation behavior and processing map of high-strength nickel brass[J]. Metals, 2020, 10(6): 782. doi: 10.3390/met10060782
|
[21] |
孙军伟, 张荣伟, 李升燕, 等. 5812铝合金热变形行为研究[J]. 有色金属科学与工程, 2018, 9(5): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201805008.htm
|
[22] |
SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14: 1136-1138. doi: 10.1016/0001-6160(66)90207-0
|
[23] |
LIN Y C, CHEN M S, ZHONG J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Computational Materials Science, 2008, 42: 470-477. doi: 10.1016/j.commatsci.2007.08.011
|
[24] |
PRASAD Y V R K, RAO K P. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability[J]. Materials Science and Engineering: A, 2008, 487: 316-327. doi: 10.1016/j.msea.2007.10.038
|
[25] |
PRASAD Y V R K, SESHACHARYULU T. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering: A, 1998, 243: 82-88. doi: 10.1016/S0921-5093(97)00782-X
|
[26] |
MURTY S, RAO B N. On the flow localization concepts in the processing maps of titanium alloy Ti-24Al-20Nb[J]. Journal of Materials Processing Technology, 2000, 104(1/2): 103-109.
|