Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
XIE Sui, CHEN Gong, WANG Xu, YANG Shaohua, LIAO Chunfa. On the thermal decomposition kinetics of graphite fluoride based on non-isothermal thermogravimetry[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 18-25. DOI: 10.13264/j.cnki.ysjskx.2018.06.003
Citation: XIE Sui, CHEN Gong, WANG Xu, YANG Shaohua, LIAO Chunfa. On the thermal decomposition kinetics of graphite fluoride based on non-isothermal thermogravimetry[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 18-25. DOI: 10.13264/j.cnki.ysjskx.2018.06.003

On the thermal decomposition kinetics of graphite fluoride based on non-isothermal thermogravimetry

More Information
  • Received Date: July 26, 2018
  • Published Date: December 30, 2018
  • Aiming at the problem of uncertain mechanism of kinetics of thermal decomposition of fluorinated graphite and insufficient information of kinetic prediction, the dynamic mechanism of (CF)n thermal decomposition reaction was analyzed by measuring multiple sets of non-isothermal thermogravimetric curves and using model-free kinetics. The thermogravimetric curve shows that (CF)n thermal decomposition undergoes one step of weight loss, resulting in an average gas phase composition of CF2.95. The results of kinetic analysis show that the mechanism function changes with the conversion rate: α < 0.1, the mechanism function is JMA equation f(α)=1.5(1-α)[-ln(1-α)]1/3; 0.15 < α < 0.3, the mechanism function is two-dimensional Avrami-Erofeyev equation f(α)=2(1-α)[-ln(1-α)]1/2;0.3 < α < 0.8, the mechanism function is Šesták-Berggren equation f(α)=7.5α1.2(1-α)2; 0.85 < α, the mechanism function is the one-dimensional Avrami-Erofeyev equation f(α)=(1-α). The recommended kinetic prediction parameter activation energy is 264.23±7.82 kJ/mol, and the pre-exponential factor is (8.70±0.21)×1014/s. In addition, the kinetic mechanism reflects the existence of carbon chain chain growth and interaction with the branching chain in the (CF)n decomposition process, which may be an important factor in the formation of amorphous structural carbon in the reaction product.
  • [1]
    NAKAJIMA T. Fluorine-carbon and fluoride-carbon materials: chemistry, physics and applications[M]. New York: Marcel Dekker, 1995: 1-31.
    [2]
    SATO Y, ITOH K, HAGIWARA R, et al. Short-range structures of poly (dicarbon monofluoride) (C2F)n and poly (carbon monofluoride) (CF)n[J]. Carbon, 2004, 42(14): 2897-2903. doi: 10.1016/j.carbon.2004.06.042
    [3]
    LAZAR P, OTYEPKOVÁ E, KARLICKY F, et al. The surface and structural properties of graphite fluoride[J]. Carbon, 2015, 94: 804-809. doi: 10.1016/j.carbon.2015.07.064
    [4]
    THOMAS P, DELBÉ K, HIMMEL D, et al. Tribological properties of low-temperature graphite fluorides. Influence of the structure on the lubricating performances[J]. Journal of Physics & Chemistry of Solids, 2006, 67(5/6): 1095-1099. http://www.sciencedirect.com/science/article/pii/S002236970600045X
    [5]
    MIAO X, YANG J, PAN W, et al. Graphite fluoride as a cathode material for primary magnesium batteries with high energy density[J]. Electrochimica Acta, 2016, 210: 704-711. http://www.sciencedirect.com/science/article/pii/S0013468616312877
    [6]
    房亚楠, 刘栓, 赵文杰, 等.石墨/氟碳涂层与氟化石墨/氟碳涂层腐蚀行为的研究[J].电镀与涂饰, 2016, 35(14): 747-754. http://www.cnki.com.cn/Article/CJFDTOTAL-DDTL201614011.htm
    [7]
    康文泽, 李尚益.氟化石墨烯制备与研究进展[J].炭素, 2016(3): 12-16. http://d.old.wanfangdata.com.cn/Periodical/ts201603002
    [8]
    黄海平, 徐亮, 岳亚锋, 等.基于石墨烯量子点修饰电极的亚硝酸根电化学传感器[J].有色金属科学与工程, 2017, 8(2): 47-51. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017020008
    [9]
    CRASSOUS I, GROULT H, LANTELME F, et al. Study of the fluorination of carbon anode in molten KF-2HF by XPS and NMR investigations[J]. Journal of Fluorine Chemistry, 2009, 130(12): 1080-1085. doi: 10.1016/j.jfluchem.2009.07.022
    [10]
    ZHU H M, SADOWAY D R. Anode reaction in aluminium electrolysis prior to and during anode effect[C]//ANJIER J L. Light Metals 2003. New York: John Wiley & Sons, Inc., 2003: 343-349.
    [11]
    HAVERKAMP R G. An XPS study of the fluorination of carbon anodes in molten NaF-AlF3-CaF2[J]. Journal of Materials Science, 2012, 47(3): 1262-1267. doi: 10.1007/s10853-011-5772-5
    [12]
    CHEN G, SHI Z N, WANG Z W, et al. Mechanism of graphite electrode fluorinated in 2.4 NaF/AlF3-Al2O3 melt at 1 373 K[J]. Journal of the Electrochemical Society, 2014, 161(14): C587-C593. doi: 10.1149/2.0781414jes
    [13]
    WATANABE N, KOYAMA S, IMOTO H. Thermal decomposition of graphite fluoride. Ⅰ. Decomposition products of graphite fluoride, (CF)n in a vacuum[J]. Bulletin of the Chemical Society of Japan, 1980, 53(10): 2731-2734. doi: 10.1246/bcsj.53.2731
    [14]
    BETTINGER H F, PENG H. Thermolysis of fluorinated single-walled carbon nanotubes: Identification of gaseous decomposition products by matrix isolation infrared spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(49): 23218-23224. doi: 10.1021/jp054370r
    [15]
    CHEN G, SHI Z, YU J, et al. Kinetic analysis of the non-isothermal decomposition of carbon monofluoride[J]. Thermochimica Acta, 2014, 589(10): 63-69. http://www.sciencedirect.com/science/article/pii/S0040603114001993
    [16]
    KAMARCHIK P, MARGRAVE J L. A study of thermal decomposition of the solid-layered fluorocarbon, poly (carbon monofluoride)[J]. Journal of Thermal Analysis, 1977, 11(2): 259-270. doi: 10.1007/BF01909964
    [17]
    WATANABE N, KOYAMA S. Thermal decomposition of graphite fluoride. Ⅱ. Kinetics of thermal decomposition of (CF)n in a vacuum[J]. Bulletin of the Chemical Society of Japan, 1980, 53(11): 3093-3099. doi: 10.1246/bcsj.53.3093
    [18]
    杨序纲, 吴琪琳.拉曼光谱的分析与应用[M].北京:国防工业出版社, 2008: 158-163.
    [19]
    VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19. http://www.sciencedirect.com/science/article/pii/S0040603111002152
    [20]
    VYAZOVKIN S. Model-free kinetics: staying free of multiplying entities without necessity[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1): 45-51. doi: 10.1007-s10973-005-7044-6/
    [21]
    吴易燃, 姜恒, 宫红, 等.氢氧化镧的热分解动力学[J].稀土, 2015, 36(4): 116-119. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201504022.htm
    [22]
    MÁLEK J. The kinetic-analysis of nonisothermal data[J]. Thermochimica Acta, 1992, 200(8): 257-269. http://www.sciencedirect.com/science/article/pii/004060319285118F
    [23]
    KHAWAM A, FLANAGAN D R. Solid-state kinetic models: basics and mathematical fundamentals[J]. Journal of Physical Chemistry B, 2006, 110(35): 17315-17328. doi: 10.1021/jp062746a
    [24]
    ŠESTÁK J, BERGGREN G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperature[J]. Thermochimica Acta, 1971, 3(1): 1-12. doi: 10.1016/0040-6031(71)85051-7
    [25]
    ŠIMON P. Fourty years of the Šesták-Berggren equation[J]. Thermochimica Acta, 2011, 520(1): 156-157.
    [26]
    胡荣祖.热分析动力学[M]. 2版.北京:科学出版社, 2008: 163-164.
  • Related Articles

    [1]MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012
    [2]GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010
    [3]CHEN Jun, ZHANG Wenjuan, MA Baozhong, WANG Chengyan, CHEN Yongqiang. Research progress of mechanical activation in solid phase reaction[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 13-21. DOI: 10.13264/j.cnki.ysjskx.2021.01.003
    [4]XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011
    [5]WANG Yun, DENG Gengfeng, CAI Chenlong, GE Nanfei, DENG Liangliang, YU Feng. Mechanism and kinetics of thermal decomposition of dysprosium oxalate with six water[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 98-104. DOI: 10.13264/j.cnki.ysjskx.2017.06.016
    [6]YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013
    [7]SUN Peng, YIN Congling, LEI Xiuyun. Pb3Mn7O15: synthesis, phase transition, transformation and decomposition[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 75-79. DOI: 10.13264/j.cnki.ysjskx.2017.01.013
    [8]ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003
    [9]LIU Yang, SHU Qifeng. Effect of MgO and MnO on phase of CaO-SiO2-Fe2O3-P2O5 slag system[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 29-34. DOI: 10.13264/j.cnki.ysjskx.2016.03.006
    [10]Yang You-ming, Zhang Shengqi, Huang Zhenghua, Zhang Jian, Guan Xindi, Liu Jianhua. Experimental study on decomposition of Rare earths by load acid organic phase of P507-N235[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 114-118. DOI: 10.13264/j.cnki.ysjskx.2016.01.021

Catalog

    Article Metrics

    Article views (92) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return