Citation: | XIE Sui, CHEN Gong, WANG Xu, YANG Shaohua, LIAO Chunfa. On the thermal decomposition kinetics of graphite fluoride based on non-isothermal thermogravimetry[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 18-25. DOI: 10.13264/j.cnki.ysjskx.2018.06.003 |
[1] |
NAKAJIMA T. Fluorine-carbon and fluoride-carbon materials: chemistry, physics and applications[M]. New York: Marcel Dekker, 1995: 1-31.
|
[2] |
SATO Y, ITOH K, HAGIWARA R, et al. Short-range structures of poly (dicarbon monofluoride) (C2F)n and poly (carbon monofluoride) (CF)n[J]. Carbon, 2004, 42(14): 2897-2903. doi: 10.1016/j.carbon.2004.06.042
|
[3] |
LAZAR P, OTYEPKOVÁ E, KARLICKY F, et al. The surface and structural properties of graphite fluoride[J]. Carbon, 2015, 94: 804-809. doi: 10.1016/j.carbon.2015.07.064
|
[4] |
THOMAS P, DELBÉ K, HIMMEL D, et al. Tribological properties of low-temperature graphite fluorides. Influence of the structure on the lubricating performances[J]. Journal of Physics & Chemistry of Solids, 2006, 67(5/6): 1095-1099. http://www.sciencedirect.com/science/article/pii/S002236970600045X
|
[5] |
MIAO X, YANG J, PAN W, et al. Graphite fluoride as a cathode material for primary magnesium batteries with high energy density[J]. Electrochimica Acta, 2016, 210: 704-711. http://www.sciencedirect.com/science/article/pii/S0013468616312877
|
[6] |
房亚楠, 刘栓, 赵文杰, 等.石墨/氟碳涂层与氟化石墨/氟碳涂层腐蚀行为的研究[J].电镀与涂饰, 2016, 35(14): 747-754. http://www.cnki.com.cn/Article/CJFDTOTAL-DDTL201614011.htm
|
[7] |
康文泽, 李尚益.氟化石墨烯制备与研究进展[J].炭素, 2016(3): 12-16. http://d.old.wanfangdata.com.cn/Periodical/ts201603002
|
[8] |
黄海平, 徐亮, 岳亚锋, 等.基于石墨烯量子点修饰电极的亚硝酸根电化学传感器[J].有色金属科学与工程, 2017, 8(2): 47-51. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017020008
|
[9] |
CRASSOUS I, GROULT H, LANTELME F, et al. Study of the fluorination of carbon anode in molten KF-2HF by XPS and NMR investigations[J]. Journal of Fluorine Chemistry, 2009, 130(12): 1080-1085. doi: 10.1016/j.jfluchem.2009.07.022
|
[10] |
ZHU H M, SADOWAY D R. Anode reaction in aluminium electrolysis prior to and during anode effect[C]//ANJIER J L. Light Metals 2003. New York: John Wiley & Sons, Inc., 2003: 343-349.
|
[11] |
HAVERKAMP R G. An XPS study of the fluorination of carbon anodes in molten NaF-AlF3-CaF2[J]. Journal of Materials Science, 2012, 47(3): 1262-1267. doi: 10.1007/s10853-011-5772-5
|
[12] |
CHEN G, SHI Z N, WANG Z W, et al. Mechanism of graphite electrode fluorinated in 2.4 NaF/AlF3-Al2O3 melt at 1 373 K[J]. Journal of the Electrochemical Society, 2014, 161(14): C587-C593. doi: 10.1149/2.0781414jes
|
[13] |
WATANABE N, KOYAMA S, IMOTO H. Thermal decomposition of graphite fluoride. Ⅰ. Decomposition products of graphite fluoride, (CF)n in a vacuum[J]. Bulletin of the Chemical Society of Japan, 1980, 53(10): 2731-2734. doi: 10.1246/bcsj.53.2731
|
[14] |
BETTINGER H F, PENG H. Thermolysis of fluorinated single-walled carbon nanotubes: Identification of gaseous decomposition products by matrix isolation infrared spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109(49): 23218-23224. doi: 10.1021/jp054370r
|
[15] |
CHEN G, SHI Z, YU J, et al. Kinetic analysis of the non-isothermal decomposition of carbon monofluoride[J]. Thermochimica Acta, 2014, 589(10): 63-69. http://www.sciencedirect.com/science/article/pii/S0040603114001993
|
[16] |
KAMARCHIK P, MARGRAVE J L. A study of thermal decomposition of the solid-layered fluorocarbon, poly (carbon monofluoride)[J]. Journal of Thermal Analysis, 1977, 11(2): 259-270. doi: 10.1007/BF01909964
|
[17] |
WATANABE N, KOYAMA S. Thermal decomposition of graphite fluoride. Ⅱ. Kinetics of thermal decomposition of (CF)n in a vacuum[J]. Bulletin of the Chemical Society of Japan, 1980, 53(11): 3093-3099. doi: 10.1246/bcsj.53.3093
|
[18] |
杨序纲, 吴琪琳.拉曼光谱的分析与应用[M].北京:国防工业出版社, 2008: 158-163.
|
[19] |
VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19. http://www.sciencedirect.com/science/article/pii/S0040603111002152
|
[20] |
VYAZOVKIN S. Model-free kinetics: staying free of multiplying entities without necessity[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1): 45-51. doi: 10.1007-s10973-005-7044-6/
|
[21] |
吴易燃, 姜恒, 宫红, 等.氢氧化镧的热分解动力学[J].稀土, 2015, 36(4): 116-119. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201504022.htm
|
[22] |
MÁLEK J. The kinetic-analysis of nonisothermal data[J]. Thermochimica Acta, 1992, 200(8): 257-269. http://www.sciencedirect.com/science/article/pii/004060319285118F
|
[23] |
KHAWAM A, FLANAGAN D R. Solid-state kinetic models: basics and mathematical fundamentals[J]. Journal of Physical Chemistry B, 2006, 110(35): 17315-17328. doi: 10.1021/jp062746a
|
[24] |
ŠESTÁK J, BERGGREN G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperature[J]. Thermochimica Acta, 1971, 3(1): 1-12. doi: 10.1016/0040-6031(71)85051-7
|
[25] |
ŠIMON P. Fourty years of the Šesták-Berggren equation[J]. Thermochimica Acta, 2011, 520(1): 156-157.
|
[26] |
胡荣祖.热分析动力学[M]. 2版.北京:科学出版社, 2008: 163-164.
|
[1] | MA Junqi, TAO Xingzhen, PENG Lin, XIE Yufei. Crack detection and recognition based on improved BiSeNetV2[J]. Nonferrous Metals Science and Engineering, 2022, 13(6): 91-97. DOI: 10.13264/j.cnki.ysjskx.2022.06.012 |
[2] | GAN Minglong, LI Yameng, FU Junxiang. Phase transition and upconversion luminescent properties of NaYF4: Yb, Er@SiO2 at high temperature[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 75-80. DOI: 10.13264/j.cnki.ysjskx.2021.01.010 |
[3] | CHEN Jun, ZHANG Wenjuan, MA Baozhong, WANG Chengyan, CHEN Yongqiang. Research progress of mechanical activation in solid phase reaction[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 13-21. DOI: 10.13264/j.cnki.ysjskx.2021.01.003 |
[4] | XU Chang, LUO Jiangbin, PENG Wanwan, CHENG Boming, QIU Shitao, ZHONG Huaiyu, ZHONG Shengwen. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9 (PO4)3[J]. Nonferrous Metals Science and Engineering, 2018, 9(1): 66-70. DOI: 10.13264/j.cnki.ysjskx.2018.01.011 |
[5] | WANG Yun, DENG Gengfeng, CAI Chenlong, GE Nanfei, DENG Liangliang, YU Feng. Mechanism and kinetics of thermal decomposition of dysprosium oxalate with six water[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 98-104. DOI: 10.13264/j.cnki.ysjskx.2017.06.016 |
[6] | YE Qing, FENG Xingyu, ZHAO Hongjin. Effects of solid solution time on microstructure and properties of Cu-Ni-Si-Mg alloy[J]. Nonferrous Metals Science and Engineering, 2017, 8(3): 79-83. DOI: 10.13264/j.cnki.ysjskx.2017.03.013 |
[7] | SUN Peng, YIN Congling, LEI Xiuyun. Pb3Mn7O15: synthesis, phase transition, transformation and decomposition[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 75-79. DOI: 10.13264/j.cnki.ysjskx.2017.01.013 |
[8] | ZHANG Lina, YUAN Zhangfu, LI Linshan, WU Yan, SUI Dianpeng. Model research of thermal decomposition kinetics of limestone[J]. Nonferrous Metals Science and Engineering, 2016, 7(6): 13-18. DOI: 10.13264/j.cnki.ysjskx.2016.06.003 |
[9] | LIU Yang, SHU Qifeng. Effect of MgO and MnO on phase of CaO-SiO2-Fe2O3-P2O5 slag system[J]. Nonferrous Metals Science and Engineering, 2016, 7(3): 29-34. DOI: 10.13264/j.cnki.ysjskx.2016.03.006 |
[10] | Yang You-ming, Zhang Shengqi, Huang Zhenghua, Zhang Jian, Guan Xindi, Liu Jianhua. Experimental study on decomposition of Rare earths by load acid organic phase of P507-N235[J]. Nonferrous Metals Science and Engineering, 2016, 7(1): 114-118. DOI: 10.13264/j.cnki.ysjskx.2016.01.021 |