Founded in 1987, Bimonthly
Supervisor:Jiangxi University Of Science And Technology
Sponsored by:Jiangxi University Of Science And Technology
Jiangxi Nonferrous Metals Society
ISSN:1674-9669
CN:36-1311/TF
CODEN YJKYA9
MA Xiaoshuai, CHEN Fanyun, ZHANG Mengdi, YANG Kai, YU Changlin. Preparation and application of g-C3N4-based photocatalyst[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 42-52. DOI: 10.13264/j.cnki.ysjskx.2018.03.008
Citation: MA Xiaoshuai, CHEN Fanyun, ZHANG Mengdi, YANG Kai, YU Changlin. Preparation and application of g-C3N4-based photocatalyst[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 42-52. DOI: 10.13264/j.cnki.ysjskx.2018.03.008

Preparation and application of g-C3N4-based photocatalyst

More Information
  • Received Date: April 01, 2018
  • Published Date: June 29, 2018
  • Graphitic carbon nitride (g-C3N4), one kind of semiconductor materials with advantages like no toxicity, small band gap (2.7 eV) and strong absorption capacity for visible light in solar spectrum, is a new type of photocatalyst which has gained rapid development in recent years. Pure g-C3N4, however, has such disadvantages as limited ability to capture visible light, easy recombination with charge carriers and low specific surface area. Its photocatalytic efficiency is hard to meet large-scale application in industry. In this paper, different synthesis methods of g-C3N4 were summarized. The strategies for further enhancing the activity of g-C3N4 were described, including the control of pore and specific surface area, noble metal deposition, nonmetal doping, and formation of the composite material by semiconductor coupling. The research progress of the application of g-C3N4-based photocatalyst in the degradation of organic pollutants, photocatalytic water splitting and reduction of hexavalent chromium was analyzed. Finally, the new prospect for the research on g-C3N4-based photocatalyst was proposed.
  • [1]
    陈建钗, 薛霜霜, 余长林.稀土在非TiO2光催化剂的改性研究[J].有色金属科学与工程, 2015, 6(1): 99-105. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201501019
    [2]
    余长林, 操芳芳, 李鑫.纳米BiOI的稳定性、结构及光催化性能研究[J].有色金属科学与工程, 2011, 2(4): 86-91. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20110420
    [3]
    薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1): 86-93. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201701015
    [4]
    刘仁月, 吴榛, 白羽, 等.微米球光催化剂在环境净化及能源转化的研究进展[J].有色金属科学与工程, 2016, 7(6): 62-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060011
    [5]
    余长林, 杨凯.异质结构的复合光催化材料的研究新进展[J].有色金属科学与工程, 2010, 1(2): 16-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDZ201304010.htm
    [6]
    白羽, 吴榛, 刘仁月, 等.花状Pt/Bi2WO6微米晶合成、表征及其高可见光催化性能[J].有色金属科学与工程, 2016, 7(2): 60-66. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201511030
    [7]
    黄瑞宇, 罗旭燕, 赵东方, 等.银掺杂二氧化钛及其光催化性能研究[J].有色金属科学与工程, 2016, 7(2): 67-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602012
    [8]
    DU H, LIU Y N, SHEN C C, et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2017, 38(8): 1295-1306. doi: 10.1016/S1872-2067(17)62866-3
    [9]
    祝萌, 杨德玉, 唐梦泽, 等.改性Al2O3催化材料制备及对亚甲基蓝微波降解性能研究[J].沈阳师范大学学报, 2012, 30(4): 534-537.
    [10]
    周庆芳, 吕生华, 崔亚亚.二氧化钛/氧化石墨烯纳米复合材料光催化还原六价铬[J].陕西科技大学学报, 2015, 33(4): 51-55. http://www.docin.com/p-1573847415.html
    [11]
    李文杰. FeOOH催化降解苯酚的性能研究[J].环境科学与管理, 2014, 39(4): 92-94. http://www.cqvip.com/QK/83144A/201404/49631627.html
    [12]
    田坚, 刘珍, 魏龙福, 等.可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J].有色金属科学与工程, 2017, 8(6): 23-35. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060005
    [13]
    钟利丹, 付晓娟.石墨相氮化碳的研究进展[J].内蒙古石油化工, 2017(6): 24-25. https://www.hanspub.org/journal/PaperInformation.aspx?paperID=15313
    [14]
    吴丹, 王椰, 李梦瑶, 等.石墨相氮化碳复合光催化剂的制备及其光催化性能的研究进展[J].当代化工研究, 2017(3): 124-125. http://cdmd.cnki.com.cn/Article/CDMD-10287-1015952740.htm
    [15]
    张金水, 王博, 王心晨.石墨相氮化碳的化学合成及应用[J].物理化学学报, 2013(9): 1865-1876. http://www.doc88.com/p-2496833775816.html
    [16]
    ZHU B C, XIA P F, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4 /Ag2WO4 photocatalyst[J]. Applied Surface Science, 2017, 391: 175-183. doi: 10.1016/j.apsusc.2016.07.104
    [17]
    WANG Y X, WANG H, CHEN F Y, et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis[J]. Applied Catalysis B: Environmental, 2017, 206: 417-425. doi: 10.1016/j.apcatb.2017.01.041
    [18]
    KHABASHESKU V N, ZIMMERMAN J L, MARGRAVE J L. Powder synthesis and characterization of amorphous carbon nitride[J]. Journal of Chemistry of Materials, 2000, 12(11): 3264-3270. doi: 10.1021/cm000328r
    [19]
    陈秋丽, 彭富昌, 刘双, 等.类石墨相C3N4光催化剂的制备及改性研究进展[J].化工技术与开发, 2017, 46(9): 25-29. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxhg201709007&dbname=CJFD&dbcode=CJFQ
    [20]
    FU Q, JIU J T, CAI K, et al. Attempt to deposit carbon nitride films by electrodeposition from an organic liquid[J]. Physical Review B, 1999, 59(3): 1693. doi: 10.1103/PhysRevB.59.1693
    [21]
    范乾靖, 刘建军, 于迎春, 等.新型非金属光催化剂―石墨型氮化碳的研究进展[J].化工进展, 2014, 33(5):76-78. doi: 10.3969/j.issn.1000-6613.2014.05.016
    [22]
    李梅, 张胜波, 刘晓, 等.硬模板法制备聚合物半导体氮化碳[J].高校化学工程学报, 2017, 31(4): 749-762. http://www.gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?contentID=&colType=4&yt=2017&st=04
    [23]
    CHEN D M, YANG J J, DING H, et al. Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2017, 391: 384-391. doi: 10.1016/j.apsusc.2016.06.173
    [24]
    王艳环, 郭强, 姜涛, 等.介孔石墨相氮化碳制备及其催化应用研究进展[J].人工晶体学报, 2016, 45(11): 2693-2700. doi: 10.3969/j.issn.1000-985X.2016.11.023
    [25]
    SHEN W Z, REN L W, ZHOU H, et al. Facile one-pot synthesis of bimedal mesepormm carbon nitride and its function as a lipase immobilization support[J]. Journal of Materials Chemistry, 2011, 21(11): 3890-3894. doi: 10.1039/c0jm03666h
    [26]
    何洪波, 薛霜霜, 余长林.钨基半导体光催化剂研究进展[J].有色金属科学与工程, 2015, 6(5):32-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505007
    [27]
    LIU S, ZHU H L, YAO W Q, et al. One step synthesis of P-doped g-C3N4 with the enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2018, 430: 309-315. doi: 10.1016/j.apsusc.2017.07.108
    [28]
    张金龙, 陈锋, 田宝柱, 等.光催化[M].上海:华东理工大学出版社, 2012.
    [29]
    NAGAJYOTHI P C, PANDURANGAN M, VATTIKUTI S V P, et al. Enhanced photocatalytic activity of Ag/g-C3N4 composite[J]. Separation and Purification Technology, 2017, 188: 228-237. doi: 10.1016/j.seppur.2017.07.026
    [30]
    JIANG Y H, LI F, LIU Y, et al. Construction of TiO2 hollow nanosphere/g-C3N4 composites with superior visible-light photocatalytic activity and mechanism insight[J]. Journal of Industrial and Engineering Chemistry, 2016, 41: 130-140. doi: 10.1016/j.jiec.2016.07.013
    [31]
    LI G S, SHI J L, ZHANG G G, et al. The facile synthesis of graphitic carbon nitride from amino acid and and urea for photocatalytic H2 production[J]. Research on Chemical Intermediates, 2017, 43(9): 5137-5152. doi: 10.1007/s11164-017-3041-1
    [32]
    ROSLI N I M, LAM S M, SIN J C, et al. Photocatalytic performance of ZnO/g-C3N4 for removal of phenol under simulated sunlight irradiation[J]. Environmental Engineering, 2018, 144(2):26-30. doi: 10.1061/%28ASCE%29EE.1943-7870.0001300
    [33]
    WANG Y Y, YANG W J, CHEN X J, et al. Photocatalytic activity enhancement of coreshell structure g-C3N4 @TiO2 via controlled ultrathin g-C3N4 layer[J]. Applied Catalysis B: Environmental, 2018, 220: 337-347. doi: 10.1016/j.apcatb.2017.08.004
    [34]
    SHI L, WANG F X, LIANG L, et al. In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Catalysis Communications, 2017, 89: 129-132. doi: 10.1016/j.catcom.2016.10.020
    [35]
    DING W, LIU S Q, HE Z, et al. One-step synthesis of graphitic carbon nitride nanosheets for efficient catalysis of phenol removal under visible light[J]. Chinese Journal of Catalysis, 2017, 38(10): 1711-1718. doi: 10.1016/S1872-2067(17)62907-3
    [36]
    YU Y Z, WANG C C, LUO L H, et al. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation[J]. Chemical Engineering Journal, 2018, 334: 1869-1877. doi: 10.1016/j.cej.2017.11.133
    [37]
    ZHOU X J, ZHANG G, SHAO C L, et al. Fabrication of g-C3N4 /SiO2-Au composite nanofibers with enhanced visible photocatalytic activity[J]. Ceramics International, 2017, 43(17): 15699-15707. doi: 10.1016/j.ceramint.2017.08.130
    [38]
    JOURSHABANI M, SHARIATINIA Z, BADIEI A. Sulfur-Doped mesoporous carbon nitride decorated with Cu particles for efficient photocatalytic degradation under visible-light irradiation[J]. Journal of Physical Chemistry C, 2017, 121(35): 19239-19253. doi: 10.1021/acs.jpcc.7b05556
    [39]
    MIAO X L, SHEN X P, WU J J, et al. Fabrication of an all solid Z-scheme photocatalyst g-C3N4 /GO/AgBr with enhanced visible light photocatalytic activity[J]. Applied Catalysis A: General, 2017, 539: 104-113. doi: 10.1016/j.apcata.2017.04.009
    [40]
    GUO Y, WANG R X, WANG P F, et al. Developing polyetherimide/graphitic carbon nitride floating photocatalyst with good photodegradation performance of methyl orange under light irradiation[J]. Chemosphere, 2017, 179: 84-91. doi: 10.1016/j.chemosphere.2017.03.085
    [41]
    FU Y H, LIANG W, GUO J Q, et al. MoS2 quantum dots decorated g-C3N4 /Ag heterostructures for enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2018, 430: 234-242. doi: 10.1016/j.apsusc.2017.08.042
    [42]
    DONG Z F, WU Y, THIRUGNANAM N, et al. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production[J]. Applied Surface Science, 2018, 430: 293-300. doi: 10.1016/j.apsusc.2017.07.186
    [43]
    ZHANG J W, GONG S, MAHMOOD N, et al. Oxygen-doped nanoporous carbon nitride via water- based homogeneous supramolecular assembly for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 9-16. doi: 10.1016/j.apcatb.2017.09.003
    [44]
    SHAO M M, SHAO Y F, CHAI J W, et al. Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5(32): 16748-16756. doi: 10.1039/C7TA04122E
    [45]
    FANG X Y, SONG J L, PU T T, et al. Graphitic carbon nitride-stabilized CdS@CoS nanorods: An efficient visible-light-driven photocatalyst for hydrogen evolution with enhanced photo-corrosion resistance[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28183-28192. doi: 10.1016/j.ijhydene.2017.09.075
    [46]
    HAN C C, GAO Y Q, LIU S, et al. Facile synthesis of AuPd/g-C3N4 nanocomposite: An effective strategy to enhance photocatalytic hydrogen evolution activity[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22765-22775. doi: 10.1016/j.ijhydene.2017.07.154
    [47]
    DING N, ZHANG L S, ZHANG H Y, et al. Microwave-assisted synthesis of ZnIn2S4/g-C3N4 heterojunction photocatalysts for efficient visible light photocatalytic hydrogen evolution[J]. Catalysis Communications, 2017, 100: 173-177. doi: 10.1016/j.catcom.2017.06.050
    [48]
    XU Q L, CHENG B, YU J G, et al. Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst[J]. Carbon, 2017, 18: 241-249. https://www.sciencedirect.com/journal/carbon/vol/118/suppl/C
    [49]
    TIAN N, ZHANG Y H, LI X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution[J]. Nano Energy, 2017, 38: 72-81. doi: 10.1016/j.nanoen.2017.05.038
    [50]
    SUN H, ZHOU X Z, ZHANG H Z, et al. An efficient exfoliation method to obtain graphitic carbon nitride nanosheets with superior visible-light photocatalytic activity[J]. International Journal of Hydrogen Energy, 2017, 42(12): 7930-7937. doi: 10.1016/j.ijhydene.2016.12.080
    [51]
    LIU L, HU P R, CUI W Q, et al. Increased photocatalytic hydrogen evolution and stability over nano-sheet g-C3N4 hybridized CdS core@shell structure[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17435-17445. doi: 10.1016/j.ijhydene.2017.02.171
    [52]
    ZOU Y J, SHI J W, MA D D, et al. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution[J]. Chemical Engineering Journal, 2017, 332: 435-444. https://www.sciencedirect.com/science/article/pii/S1385894717305910
    [53]
    WANG P, GUAN Z J, LI Q Y, et al. Efficient visible-light-driven photocatalytic hydrogen production from water by using Eosin Y-sensitized novel g-C3N4 /Pt/GO composites[J]. Journal of Materials Science, 2018, 53(1): 774-786. doi: 10.1007/s10853-017-1540-5
    [54]
    CAO Y Z, GAO Q, LI Q, et al. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity[J]. RSC Advances, 2017, 7(65): 40727-40733. doi: 10.1039/C7RA06774G
    [55]
    ZHANG H, LIU F, WU H, et al. In situ synthesis of g-C3N4 /TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light[J]. RSC Advances, 2017, 7(64): 40327-40333. doi: 10.1039/C7RA06786K
    [56]
    ZHANG F W, WEN Q J, HONG M Z, et al. Efficient and sustainable metal-free GR/C3N4 /CDots ternary heterostructrues for versatile visible-light-driven photoredox applications: Toward synergistic interaction of carbon materials[J]. Chemical Engineering Journal, 2017, 307: 593-603. doi: 10.1016/j.cej.2016.08.120
    [57]
    WANG J H, CUI C X, LI Y, et al. Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation under visible-light illumination[J]. Journal of Hazardous Materials, 2017, 339: 43-53. doi: 10.1016/j.jhazmat.2017.06.011
    [58]
    FENG W H, FANG J Z, ZHOU G Y, et al. Rationally designed Bi@BiOCl/g-C3N4 heterostructure with exceptional solar-driven photocatalytic activity[J]. Journal of Molecular Catalysis, 2017, 434: 69-79. doi: 10.1016/j.mcat.2017.03.004
  • Related Articles

    [1]WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011
    [2]ZHAO Kaiyan, LI Feng, YU Changlin, YANG Kai. Research progress in the fabrication and application of rare-earth single-atom photocatalysts[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 425-438. DOI: 10.13264/j.cnki.ysjskx.2023.03.016
    [3]HUANG Rui, CAI Wei, LIU Xiaoxue, WANG Zhenhua, GAO Rongli, FU Chunlin. Research progress in ferroelectric heterojunction photocatalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 49-59. DOI: 10.13264/j.cnki.ysjskx.2022.05.007
    [4]WANG Ying, YANG Chuanxi, WANG Xiaoning, ZHU Qing, DONG Wenping, YANG Cheng, LYU Haojie, WANG Weiliang, FAN Yuqi. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005
    [5]ZHANG Zhenmin1, JIA Jingwen, ZHANG Mengfan, LIU Zhen, YU Changlin, YANG Kai. Research progress of double perovskite photocatalyst materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 14-22. DOI: 10.13264/j.cnki.ysjskx.2020.04.003
    [6]LI Xiaoxiao, YANG Kai, ZENG Debin, ZHANG Kailian, YU Changlin, HUANG Weiya. Preparation of rod-like BiPO4 by microwave hydrothermal method and study on its photocatalytic properties[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 78-84. DOI: 10.13264/j.cnki.ysjskx.2019.04.013
    [7]WANG Shuhong, LIU Xin, KONG Bin, LU Jiawei, LI Hong, LIU Liequan, WANG Jinjin, CHEN Juan, HUANG Weiya. Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 68-76. DOI: 10.13264/j.cnki.ysjskx.2019.02.010
    [8]XUE Shuangshuang, HE Hongbo, WU Zhen, YU Changlin, ZHOU Wanqin. Preparation of BiOI/BiOBr hetero-structured photocatalyst by grinding-calcination route and its photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 86-93. DOI: 10.13264/j.cnki.ysjskx.2017.01.015
    [9]LI Xin, YU Chang-lin, FAN Qi-zhe, YANG Kai, CAO Fang-fang. Solvothermal preparation spherical ZnS nano-photocatalyst and its photocatalytic activity[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 21-26. DOI: 10.13264/j.cnki.ysjskx.2012.03.008
    [10]CAO Fang-fang, YU Chang-lin, YANG Kai, LI Xin. Research on the sonochemical preparation of nano-structured photocatalytic materials and its progress[J]. Nonferrous Metals Science and Engineering, 2011, 2(5): 12-17.
  • Cited by

    Periodical cited type(18)

    1. 张宇甜,牟康玮,左梦,李羽希,王福萍,梁红莲. 芦苇-碳纳米管掺杂二氧化钛复合材料对甲醛溶液的处理. 山西化工. 2024(08): 1-4+8 .
    2. 王书红,陈步东,曹飞飞,吴启军,钱纯波,徐飞星,李中平. TiO_2/CuS复合材料的制备及其光催化降解污染废水的性能研究. 有色金属科学与工程. 2024(06): 877-889 . 本站查看
    3. 王蕾,宋欣怡,童海健,霍宇凝. 光还原法制备花状Bi/CuS可见光催化剂及其性能研究. 稀有金属. 2023(01): 177-185 .
    4. 霍彦廷,舒庆. 双Z型异质结BiOI/MoO_3/g-C_3N_4的构建及其光催化性能研究. 有色金属科学与工程. 2023(01): 74-85 . 本站查看
    5. 赵凯燕,李锋,余长林,杨凯. 稀土单原子光催化剂制备和应用研究进展. 有色金属科学与工程. 2023(03): 425-438 . 本站查看
    6. 张犇,张瑞峰,杨川云,杨世莲. 锰镁氢氧化物碳基复合材料催化臭氧化降解亚甲基蓝. 功能材料. 2023(09): 9123-9132 .
    7. 石伟和,贾陈忠,陆必旺,马志鸿. 催化剂掺杂对MgH_2储氢性能的改进研究. 稀有金属. 2022(01): 87-95 .
    8. 黄征,黄菲,田建军. CuInSe_2量子点的制备及光电应用研究进展. 稀有金属. 2022(06): 695-706 .
    9. 王爽,谢良波,李轶,尚登辉,郑雯雯,展思辉. 芬顿催化剂的活性氧物种生成机制及其在环境治理中的应用. 稀有金属. 2022(06): 707-723 .
    10. 车乃菊,李银辉,杨帆,刘国平,张增利,李成亮. CuO/MWCNTs复合材料降解双酚A的光催化性能. 农业环境科学学报. 2022(08): 1800-1807 .
    11. 张川群,周勤,徐冲,刘新,谭颖,黄微雅. Bi_2MoO_6的形貌调控及其应用研究进展. 有色金属科学与工程. 2021(02): 56-65 . 本站查看
    12. 任壮禾,张欣,高明霞,潘洪革,刘永锋. Ti基催化剂改性的NaAlH_4储氢材料研究进展. 稀有金属. 2021(05): 569-582 .
    13. 冯亚杰,段有雨,邹函君,马江平,周楷,周小元. 单原子催化剂在光催化分解水制氢中的研究现状. 稀有金属. 2021(05): 551-568 .
    14. 胡京宇,姚戎,潘玉航,朱超,宋爽,沈意. 可光助再生二氧化钛/层状双氢氧化物去除水体中有机染料. 化工学报. 2020(07): 3296-3303 .
    15. 龚之宝,韩迈,孙伟振,马占华,李青松. 以硫酸氧钛为钛源制备二氧化钛粒子. 应用化工. 2020(06): 1473-1476 .
    16. 张健伟,苑鹏,王建桥,沈伯雄,张艳芳. Ce掺杂的CNTs-TiO_2光催化剂制备及其NO氧化性能. 环境工程学报. 2020(07): 1852-1861 .
    17. 张柯,王海旺,刘可凡,黄谦,傅渭杰,王柄筑. 碳基材料复合半导体光催化剂的制备及应用研究进展. 炭素. 2020(01): 23-35 .
    18. 孙嘉敏,张彧涵,陈学濡,贺彬烜,蒋恩臣,简秀梅. 负载方式和负载体对TiO_2性能影响的研究进展. 广州化工. 2020(22): 4-9 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (100) PDF downloads (2) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return