Citation: | MA Xiaoshuai, CHEN Fanyun, ZHANG Mengdi, YANG Kai, YU Changlin. Preparation and application of g-C3N4-based photocatalyst[J]. Nonferrous Metals Science and Engineering, 2018, 9(3): 42-52. DOI: 10.13264/j.cnki.ysjskx.2018.03.008 |
[1] |
陈建钗, 薛霜霜, 余长林.稀土在非TiO2光催化剂的改性研究[J].有色金属科学与工程, 2015, 6(1): 99-105. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201501019
|
[2] |
余长林, 操芳芳, 李鑫.纳米BiOI的稳定性、结构及光催化性能研究[J].有色金属科学与工程, 2011, 2(4): 86-91. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=20110420
|
[3] |
薛霜霜, 何洪波, 吴榛, 等.研磨-焙烧法制备BiOI/BiOBr异质结光催化剂及其光催化性能[J].有色金属科学与工程, 2017, 8(1): 86-93. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201701015
|
[4] |
刘仁月, 吴榛, 白羽, 等.微米球光催化剂在环境净化及能源转化的研究进展[J].有色金属科学与工程, 2016, 7(6): 62-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2016060011
|
[5] |
余长林, 杨凯.异质结构的复合光催化材料的研究新进展[J].有色金属科学与工程, 2010, 1(2): 16-21. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDZ201304010.htm
|
[6] |
白羽, 吴榛, 刘仁月, 等.花状Pt/Bi2WO6微米晶合成、表征及其高可见光催化性能[J].有色金属科学与工程, 2016, 7(2): 60-66. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201511030
|
[7] |
黄瑞宇, 罗旭燕, 赵东方, 等.银掺杂二氧化钛及其光催化性能研究[J].有色金属科学与工程, 2016, 7(2): 67-72. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201602012
|
[8] |
DU H, LIU Y N, SHEN C C, et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2017, 38(8): 1295-1306. doi: 10.1016/S1872-2067(17)62866-3
|
[9] |
祝萌, 杨德玉, 唐梦泽, 等.改性Al2O3催化材料制备及对亚甲基蓝微波降解性能研究[J].沈阳师范大学学报, 2012, 30(4): 534-537.
|
[10] |
周庆芳, 吕生华, 崔亚亚.二氧化钛/氧化石墨烯纳米复合材料光催化还原六价铬[J].陕西科技大学学报, 2015, 33(4): 51-55. http://www.docin.com/p-1573847415.html
|
[11] |
李文杰. FeOOH催化降解苯酚的性能研究[J].环境科学与管理, 2014, 39(4): 92-94. http://www.cqvip.com/QK/83144A/201404/49631627.html
|
[12] |
田坚, 刘珍, 魏龙福, 等.可见光驱动的核壳结构Ag2S@Ag2CO3催化剂及其对污染物的降解性能[J].有色金属科学与工程, 2017, 8(6): 23-35. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=2017060005
|
[13] |
钟利丹, 付晓娟.石墨相氮化碳的研究进展[J].内蒙古石油化工, 2017(6): 24-25. https://www.hanspub.org/journal/PaperInformation.aspx?paperID=15313
|
[14] |
吴丹, 王椰, 李梦瑶, 等.石墨相氮化碳复合光催化剂的制备及其光催化性能的研究进展[J].当代化工研究, 2017(3): 124-125. http://cdmd.cnki.com.cn/Article/CDMD-10287-1015952740.htm
|
[15] |
张金水, 王博, 王心晨.石墨相氮化碳的化学合成及应用[J].物理化学学报, 2013(9): 1865-1876. http://www.doc88.com/p-2496833775816.html
|
[16] |
ZHU B C, XIA P F, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4 /Ag2WO4 photocatalyst[J]. Applied Surface Science, 2017, 391: 175-183. doi: 10.1016/j.apsusc.2016.07.104
|
[17] |
WANG Y X, WANG H, CHEN F Y, et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis[J]. Applied Catalysis B: Environmental, 2017, 206: 417-425. doi: 10.1016/j.apcatb.2017.01.041
|
[18] |
KHABASHESKU V N, ZIMMERMAN J L, MARGRAVE J L. Powder synthesis and characterization of amorphous carbon nitride[J]. Journal of Chemistry of Materials, 2000, 12(11): 3264-3270. doi: 10.1021/cm000328r
|
[19] |
陈秋丽, 彭富昌, 刘双, 等.类石墨相C3N4光催化剂的制备及改性研究进展[J].化工技术与开发, 2017, 46(9): 25-29. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxhg201709007&dbname=CJFD&dbcode=CJFQ
|
[20] |
FU Q, JIU J T, CAI K, et al. Attempt to deposit carbon nitride films by electrodeposition from an organic liquid[J]. Physical Review B, 1999, 59(3): 1693. doi: 10.1103/PhysRevB.59.1693
|
[21] |
范乾靖, 刘建军, 于迎春, 等.新型非金属光催化剂―石墨型氮化碳的研究进展[J].化工进展, 2014, 33(5):76-78. doi: 10.3969/j.issn.1000-6613.2014.05.016
|
[22] |
李梅, 张胜波, 刘晓, 等.硬模板法制备聚合物半导体氮化碳[J].高校化学工程学报, 2017, 31(4): 749-762. http://www.gxhx.cbpt.cnki.net/WKB2/WebPublication/wkTextContent.aspx?contentID=&colType=4&yt=2017&st=04
|
[23] |
CHEN D M, YANG J J, DING H, et al. Synthesis of nanoporous carbon nitride using calcium carbonate as templates with enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2017, 391: 384-391. doi: 10.1016/j.apsusc.2016.06.173
|
[24] |
王艳环, 郭强, 姜涛, 等.介孔石墨相氮化碳制备及其催化应用研究进展[J].人工晶体学报, 2016, 45(11): 2693-2700. doi: 10.3969/j.issn.1000-985X.2016.11.023
|
[25] |
SHEN W Z, REN L W, ZHOU H, et al. Facile one-pot synthesis of bimedal mesepormm carbon nitride and its function as a lipase immobilization support[J]. Journal of Materials Chemistry, 2011, 21(11): 3890-3894. doi: 10.1039/c0jm03666h
|
[26] |
何洪波, 薛霜霜, 余长林.钨基半导体光催化剂研究进展[J].有色金属科学与工程, 2015, 6(5):32-39. http://ysjskx.paperopen.com/oa/DArticle.aspx?type=view&id=201505007
|
[27] |
LIU S, ZHU H L, YAO W Q, et al. One step synthesis of P-doped g-C3N4 with the enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2018, 430: 309-315. doi: 10.1016/j.apsusc.2017.07.108
|
[28] |
张金龙, 陈锋, 田宝柱, 等.光催化[M].上海:华东理工大学出版社, 2012.
|
[29] |
NAGAJYOTHI P C, PANDURANGAN M, VATTIKUTI S V P, et al. Enhanced photocatalytic activity of Ag/g-C3N4 composite[J]. Separation and Purification Technology, 2017, 188: 228-237. doi: 10.1016/j.seppur.2017.07.026
|
[30] |
JIANG Y H, LI F, LIU Y, et al. Construction of TiO2 hollow nanosphere/g-C3N4 composites with superior visible-light photocatalytic activity and mechanism insight[J]. Journal of Industrial and Engineering Chemistry, 2016, 41: 130-140. doi: 10.1016/j.jiec.2016.07.013
|
[31] |
LI G S, SHI J L, ZHANG G G, et al. The facile synthesis of graphitic carbon nitride from amino acid and and urea for photocatalytic H2 production[J]. Research on Chemical Intermediates, 2017, 43(9): 5137-5152. doi: 10.1007/s11164-017-3041-1
|
[32] |
ROSLI N I M, LAM S M, SIN J C, et al. Photocatalytic performance of ZnO/g-C3N4 for removal of phenol under simulated sunlight irradiation[J]. Environmental Engineering, 2018, 144(2):26-30. doi: 10.1061/%28ASCE%29EE.1943-7870.0001300
|
[33] |
WANG Y Y, YANG W J, CHEN X J, et al. Photocatalytic activity enhancement of coreshell structure g-C3N4 @TiO2 via controlled ultrathin g-C3N4 layer[J]. Applied Catalysis B: Environmental, 2018, 220: 337-347. doi: 10.1016/j.apcatb.2017.08.004
|
[34] |
SHI L, WANG F X, LIANG L, et al. In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Catalysis Communications, 2017, 89: 129-132. doi: 10.1016/j.catcom.2016.10.020
|
[35] |
DING W, LIU S Q, HE Z, et al. One-step synthesis of graphitic carbon nitride nanosheets for efficient catalysis of phenol removal under visible light[J]. Chinese Journal of Catalysis, 2017, 38(10): 1711-1718. doi: 10.1016/S1872-2067(17)62907-3
|
[36] |
YU Y Z, WANG C C, LUO L H, et al. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation[J]. Chemical Engineering Journal, 2018, 334: 1869-1877. doi: 10.1016/j.cej.2017.11.133
|
[37] |
ZHOU X J, ZHANG G, SHAO C L, et al. Fabrication of g-C3N4 /SiO2-Au composite nanofibers with enhanced visible photocatalytic activity[J]. Ceramics International, 2017, 43(17): 15699-15707. doi: 10.1016/j.ceramint.2017.08.130
|
[38] |
JOURSHABANI M, SHARIATINIA Z, BADIEI A. Sulfur-Doped mesoporous carbon nitride decorated with Cu particles for efficient photocatalytic degradation under visible-light irradiation[J]. Journal of Physical Chemistry C, 2017, 121(35): 19239-19253. doi: 10.1021/acs.jpcc.7b05556
|
[39] |
MIAO X L, SHEN X P, WU J J, et al. Fabrication of an all solid Z-scheme photocatalyst g-C3N4 /GO/AgBr with enhanced visible light photocatalytic activity[J]. Applied Catalysis A: General, 2017, 539: 104-113. doi: 10.1016/j.apcata.2017.04.009
|
[40] |
GUO Y, WANG R X, WANG P F, et al. Developing polyetherimide/graphitic carbon nitride floating photocatalyst with good photodegradation performance of methyl orange under light irradiation[J]. Chemosphere, 2017, 179: 84-91. doi: 10.1016/j.chemosphere.2017.03.085
|
[41] |
FU Y H, LIANG W, GUO J Q, et al. MoS2 quantum dots decorated g-C3N4 /Ag heterostructures for enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2018, 430: 234-242. doi: 10.1016/j.apsusc.2017.08.042
|
[42] |
DONG Z F, WU Y, THIRUGNANAM N, et al. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production[J]. Applied Surface Science, 2018, 430: 293-300. doi: 10.1016/j.apsusc.2017.07.186
|
[43] |
ZHANG J W, GONG S, MAHMOOD N, et al. Oxygen-doped nanoporous carbon nitride via water- based homogeneous supramolecular assembly for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 9-16. doi: 10.1016/j.apcatb.2017.09.003
|
[44] |
SHAO M M, SHAO Y F, CHAI J W, et al. Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5(32): 16748-16756. doi: 10.1039/C7TA04122E
|
[45] |
FANG X Y, SONG J L, PU T T, et al. Graphitic carbon nitride-stabilized CdS@CoS nanorods: An efficient visible-light-driven photocatalyst for hydrogen evolution with enhanced photo-corrosion resistance[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28183-28192. doi: 10.1016/j.ijhydene.2017.09.075
|
[46] |
HAN C C, GAO Y Q, LIU S, et al. Facile synthesis of AuPd/g-C3N4 nanocomposite: An effective strategy to enhance photocatalytic hydrogen evolution activity[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22765-22775. doi: 10.1016/j.ijhydene.2017.07.154
|
[47] |
DING N, ZHANG L S, ZHANG H Y, et al. Microwave-assisted synthesis of ZnIn2S4/g-C3N4 heterojunction photocatalysts for efficient visible light photocatalytic hydrogen evolution[J]. Catalysis Communications, 2017, 100: 173-177. doi: 10.1016/j.catcom.2017.06.050
|
[48] |
XU Q L, CHENG B, YU J G, et al. Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst[J]. Carbon, 2017, 18: 241-249. https://www.sciencedirect.com/journal/carbon/vol/118/suppl/C
|
[49] |
TIAN N, ZHANG Y H, LI X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution[J]. Nano Energy, 2017, 38: 72-81. doi: 10.1016/j.nanoen.2017.05.038
|
[50] |
SUN H, ZHOU X Z, ZHANG H Z, et al. An efficient exfoliation method to obtain graphitic carbon nitride nanosheets with superior visible-light photocatalytic activity[J]. International Journal of Hydrogen Energy, 2017, 42(12): 7930-7937. doi: 10.1016/j.ijhydene.2016.12.080
|
[51] |
LIU L, HU P R, CUI W Q, et al. Increased photocatalytic hydrogen evolution and stability over nano-sheet g-C3N4 hybridized CdS core@shell structure[J]. International Journal of Hydrogen Energy, 2017, 42(27): 17435-17445. doi: 10.1016/j.ijhydene.2017.02.171
|
[52] |
ZOU Y J, SHI J W, MA D D, et al. In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution[J]. Chemical Engineering Journal, 2017, 332: 435-444. https://www.sciencedirect.com/science/article/pii/S1385894717305910
|
[53] |
WANG P, GUAN Z J, LI Q Y, et al. Efficient visible-light-driven photocatalytic hydrogen production from water by using Eosin Y-sensitized novel g-C3N4 /Pt/GO composites[J]. Journal of Materials Science, 2018, 53(1): 774-786. doi: 10.1007/s10853-017-1540-5
|
[54] |
CAO Y Z, GAO Q, LI Q, et al. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity[J]. RSC Advances, 2017, 7(65): 40727-40733. doi: 10.1039/C7RA06774G
|
[55] |
ZHANG H, LIU F, WU H, et al. In situ synthesis of g-C3N4 /TiO2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light[J]. RSC Advances, 2017, 7(64): 40327-40333. doi: 10.1039/C7RA06786K
|
[56] |
ZHANG F W, WEN Q J, HONG M Z, et al. Efficient and sustainable metal-free GR/C3N4 /CDots ternary heterostructrues for versatile visible-light-driven photoredox applications: Toward synergistic interaction of carbon materials[J]. Chemical Engineering Journal, 2017, 307: 593-603. doi: 10.1016/j.cej.2016.08.120
|
[57] |
WANG J H, CUI C X, LI Y, et al. Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation under visible-light illumination[J]. Journal of Hazardous Materials, 2017, 339: 43-53. doi: 10.1016/j.jhazmat.2017.06.011
|
[58] |
FENG W H, FANG J Z, ZHOU G Y, et al. Rationally designed Bi@BiOCl/g-C3N4 heterostructure with exceptional solar-driven photocatalytic activity[J]. Journal of Molecular Catalysis, 2017, 434: 69-79. doi: 10.1016/j.mcat.2017.03.004
|
[1] | WANG Shuhong, CHEN Budong, CAO Feifei, WU Qijun, QIAN Chunbo, XU Feixing, LI Zhongping. Preparation of TiO2/CuS composite materials and their performance in photocatalytic degradation of polluted wastewater[J]. Nonferrous Metals Science and Engineering, 2024, 15(6): 877-889. DOI: 10.13264/j.cnki.ysjskx.2024.06.011 |
[2] | ZHAO Kaiyan, LI Feng, YU Changlin, YANG Kai. Research progress in the fabrication and application of rare-earth single-atom photocatalysts[J]. Nonferrous Metals Science and Engineering, 2023, 14(3): 425-438. DOI: 10.13264/j.cnki.ysjskx.2023.03.016 |
[3] | HUANG Rui, CAI Wei, LIU Xiaoxue, WANG Zhenhua, GAO Rongli, FU Chunlin. Research progress in ferroelectric heterojunction photocatalyst[J]. Nonferrous Metals Science and Engineering, 2022, 13(5): 49-59. DOI: 10.13264/j.cnki.ysjskx.2022.05.007 |
[4] | WANG Ying, YANG Chuanxi, WANG Xiaoning, ZHU Qing, DONG Wenping, YANG Cheng, LYU Haojie, WANG Weiliang, FAN Yuqi. Research advances on two-dimensional materials using as photocatalysts[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 30-42. DOI: 10.13264/j.cnki.ysjskx.2021.02.005 |
[5] | ZHANG Zhenmin1, JIA Jingwen, ZHANG Mengfan, LIU Zhen, YU Changlin, YANG Kai. Research progress of double perovskite photocatalyst materials[J]. Nonferrous Metals Science and Engineering, 2020, 11(4): 14-22. DOI: 10.13264/j.cnki.ysjskx.2020.04.003 |
[6] | LI Xiaoxiao, YANG Kai, ZENG Debin, ZHANG Kailian, YU Changlin, HUANG Weiya. Preparation of rod-like BiPO4 by microwave hydrothermal method and study on its photocatalytic properties[J]. Nonferrous Metals Science and Engineering, 2019, 10(4): 78-84. DOI: 10.13264/j.cnki.ysjskx.2019.04.013 |
[7] | WANG Shuhong, LIU Xin, KONG Bin, LU Jiawei, LI Hong, LIU Liequan, WANG Jinjin, CHEN Juan, HUANG Weiya. Synthesis of CeO2/Bi2MoO6 nanocomposites and their enhanced photocatalytic degradation performance[J]. Nonferrous Metals Science and Engineering, 2019, 10(2): 68-76. DOI: 10.13264/j.cnki.ysjskx.2019.02.010 |
[8] | XUE Shuangshuang, HE Hongbo, WU Zhen, YU Changlin, ZHOU Wanqin. Preparation of BiOI/BiOBr hetero-structured photocatalyst by grinding-calcination route and its photocatalytic performance[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 86-93. DOI: 10.13264/j.cnki.ysjskx.2017.01.015 |
[9] | LI Xin, YU Chang-lin, FAN Qi-zhe, YANG Kai, CAO Fang-fang. Solvothermal preparation spherical ZnS nano-photocatalyst and its photocatalytic activity[J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 21-26. DOI: 10.13264/j.cnki.ysjskx.2012.03.008 |
[10] | CAO Fang-fang, YU Chang-lin, YANG Kai, LI Xin. Research on the sonochemical preparation of nano-structured photocatalytic materials and its progress[J]. Nonferrous Metals Science and Engineering, 2011, 2(5): 12-17. |
1. |
张宇甜,牟康玮,左梦,李羽希,王福萍,梁红莲. 芦苇-碳纳米管掺杂二氧化钛复合材料对甲醛溶液的处理. 山西化工. 2024(08): 1-4+8 .
![]() | |
2. |
王书红,陈步东,曹飞飞,吴启军,钱纯波,徐飞星,李中平. TiO_2/CuS复合材料的制备及其光催化降解污染废水的性能研究. 有色金属科学与工程. 2024(06): 877-889 .
![]() | |
3. |
王蕾,宋欣怡,童海健,霍宇凝. 光还原法制备花状Bi/CuS可见光催化剂及其性能研究. 稀有金属. 2023(01): 177-185 .
![]() | |
4. |
霍彦廷,舒庆. 双Z型异质结BiOI/MoO_3/g-C_3N_4的构建及其光催化性能研究. 有色金属科学与工程. 2023(01): 74-85 .
![]() | |
5. |
赵凯燕,李锋,余长林,杨凯. 稀土单原子光催化剂制备和应用研究进展. 有色金属科学与工程. 2023(03): 425-438 .
![]() | |
6. |
张犇,张瑞峰,杨川云,杨世莲. 锰镁氢氧化物碳基复合材料催化臭氧化降解亚甲基蓝. 功能材料. 2023(09): 9123-9132 .
![]() | |
7. |
石伟和,贾陈忠,陆必旺,马志鸿. 催化剂掺杂对MgH_2储氢性能的改进研究. 稀有金属. 2022(01): 87-95 .
![]() | |
8. |
黄征,黄菲,田建军. CuInSe_2量子点的制备及光电应用研究进展. 稀有金属. 2022(06): 695-706 .
![]() | |
9. |
王爽,谢良波,李轶,尚登辉,郑雯雯,展思辉. 芬顿催化剂的活性氧物种生成机制及其在环境治理中的应用. 稀有金属. 2022(06): 707-723 .
![]() | |
10. |
车乃菊,李银辉,杨帆,刘国平,张增利,李成亮. CuO/MWCNTs复合材料降解双酚A的光催化性能. 农业环境科学学报. 2022(08): 1800-1807 .
![]() | |
11. |
张川群,周勤,徐冲,刘新,谭颖,黄微雅. Bi_2MoO_6的形貌调控及其应用研究进展. 有色金属科学与工程. 2021(02): 56-65 .
![]() | |
12. |
任壮禾,张欣,高明霞,潘洪革,刘永锋. Ti基催化剂改性的NaAlH_4储氢材料研究进展. 稀有金属. 2021(05): 569-582 .
![]() | |
13. |
冯亚杰,段有雨,邹函君,马江平,周楷,周小元. 单原子催化剂在光催化分解水制氢中的研究现状. 稀有金属. 2021(05): 551-568 .
![]() | |
14. |
胡京宇,姚戎,潘玉航,朱超,宋爽,沈意. 可光助再生二氧化钛/层状双氢氧化物去除水体中有机染料. 化工学报. 2020(07): 3296-3303 .
![]() | |
15. |
龚之宝,韩迈,孙伟振,马占华,李青松. 以硫酸氧钛为钛源制备二氧化钛粒子. 应用化工. 2020(06): 1473-1476 .
![]() | |
16. |
张健伟,苑鹏,王建桥,沈伯雄,张艳芳. Ce掺杂的CNTs-TiO_2光催化剂制备及其NO氧化性能. 环境工程学报. 2020(07): 1852-1861 .
![]() | |
17. |
张柯,王海旺,刘可凡,黄谦,傅渭杰,王柄筑. 碳基材料复合半导体光催化剂的制备及应用研究进展. 炭素. 2020(01): 23-35 .
![]() | |
18. |
孙嘉敏,张彧涵,陈学濡,贺彬烜,蒋恩臣,简秀梅. 负载方式和负载体对TiO_2性能影响的研究进展. 广州化工. 2020(22): 4-9 .
![]() |